School of Software Engineering, Chengdu University of Information Technology, Chengdu, Sichuan, China.
School of Information Engineering, Kunming University, Kunming, Yunnan, China.
Technol Health Care. 2023;31(1):165-179. doi: 10.3233/THC-220152.
Carotid atherosclerosis plaque rupture is an important cause of myocardial infarction and stroke. The effective segmentation of ultrasound images of carotid atherosclerotic plaques aids clinicians to accurately assess plaque stability. At present, this procedure relies mainly on the experience of the medical practitioner to manually segment the ultrasound image of the carotid atherosclerotic plaque. This method is also time-consuming.
This study intends to establish an automatic intelligent segmentation method of ultrasound images of carotid plaque.
The present study combined the U-Net and DenseNet networks, to automatically segment the ultrasound images of carotid atherosclerotic plaques. The same test set was selected and segmented using the traditional U-Net network and the ResUNet network. The prediction results of the three network models were compared using Dice (Dice similarity coefficient), and VOE (volumetric overlap error) coefficients.
Compared with the existing U-Net network and ResUNet network, the Dense-UNet network exhibited an optimal effect on the automated segmentation of the ultrasound images.
The Dense-UNet network could realize the automatic segmentation of atherosclerotic plaque ultrasound images, and it could assist medical practitioners in plaque evaluation.
颈动脉粥样硬化斑块破裂是心肌梗死和中风的重要原因。颈动脉粥样硬化斑块超声图像的有效分割有助于临床医生准确评估斑块稳定性。目前,该程序主要依赖于医生的经验,通过手动分割颈动脉粥样硬化斑块的超声图像。这种方法也很耗时。
本研究旨在建立一种颈动脉斑块超声图像的自动智能分割方法。
本研究结合 U-Net 和 DenseNet 网络,自动分割颈动脉粥样硬化斑块的超声图像。使用传统的 U-Net 网络和 ResUNet 网络对相同的测试集进行分割。使用 Dice(Dice 相似系数)和 VOE(体积重叠误差)系数比较三个网络模型的预测结果。
与现有的 U-Net 网络和 ResUNet 网络相比,Dense-UNet 网络在自动分割超声图像方面效果最佳。
Dense-UNet 网络可以实现动脉粥样硬化斑块超声图像的自动分割,有助于临床医生进行斑块评估。