Suppr超能文献

一种用于解决灾后救援中带时间窗直升机路径规划问题的改进遗传算法。

An improved genetic algorithm for solving the helicopter routing problem with time window in post-disaster rescue.

作者信息

Yang Kaidong, Duan Peng, Yu Huishan

机构信息

Shandong Key Laboratory of Optical Communication Science and Technology, Liaocheng University, Liaocheng 252059, China.

School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252059, China.

出版信息

Math Biosci Eng. 2023 Jul 28;20(9):15672-15707. doi: 10.3934/mbe.2023699.

Abstract

The vehicle routing problem (VRP) is a highly significant and extensively studied issue in post-disaster rescue. In recent years, there has been widespread utilization of helicopters for post-disaster rescue. However, efficiently dispatching helicopters to reach rescue sites in post-disaster rescue is a challenge. To address this issue, this study models the issue of dispatching helicopters as a specific variant of the VRP with time window (VRPTW). Considering that the VRPTW is an NP-hard problem, the genetic algorithm (GA) as one of the prominent evolutionary algorithms with robust optimization capabilities, is a good candidate to deal with this issue. In this study, an improved GA with a local search strategy and global search strategy is proposed. To begin, a cooperative initialization strategy is proposed to generate an initial population with high quality and diversity. Subsequently, a local search strategy is presented to improve the exploitation ability. Additionally, a global search strategy is embedded to enhance the global search performance. Finally, 56 instances extended from Solomon instances are utilized for conducting simulation tests. The simulation results indicate that the average relative percentage increase (RPI) of the distance travelled by helicopters as obtained by the proposed algorithm is 0.178, 0.027, 0.075 and 0.041 times smaller than the average RPIs obtained by the tabu search algorithm, ant colony optimization algorithm, hybrid GA and simulated annealing algorithm, respectively. Simulation results reveal that the proposed algorithm is more efficient and effective for solving the VRPTW to reduce the driving distance of the helicopters in post-disaster rescue.

摘要

车辆路径问题(VRP)是灾后救援中一个极具重要性且被广泛研究的问题。近年来,直升机在灾后救援中得到了广泛应用。然而,在灾后救援中高效调度直升机抵达救援地点是一项挑战。为解决这一问题,本研究将直升机调度问题建模为带时间窗的车辆路径问题(VRPTW)的一个特定变体。鉴于VRPTW是一个NP难问题,遗传算法(GA)作为具有强大优化能力的突出进化算法之一,是处理该问题的一个不错选择。在本研究中,提出了一种具有局部搜索策略和全局搜索策略的改进遗传算法。首先,提出一种协同初始化策略来生成高质量和多样化的初始种群。随后,提出一种局部搜索策略以提高算法的开发能力。此外,嵌入一种全局搜索策略以增强全局搜索性能。最后,利用从所罗门实例扩展而来的56个实例进行模拟测试。模拟结果表明,所提算法得到的直升机飞行距离平均相对百分比增加(RPI)分别比禁忌搜索算法、蚁群优化算法、混合遗传算法和模拟退火算法得到的平均RPI小0.178、0.027、0.075和0.041倍。模拟结果表明,所提算法在解决VRPTW以减少灾后救援中直升机飞行距离方面更高效、更有效。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验