Suppr超能文献

使用广义泊松回归模型检测肠道微生物组数据中的潜在类别。

Testing latent classes in gut microbiome data using generalized Poisson regression models.

机构信息

School of Statistics, University of International Business and Economics, Beijing, China.

Department of Epidemiology, School of Public Health and Tropical Medicine, Tulane University, New Orleans, Louisiana, USA.

出版信息

Stat Med. 2024 Jan 15;43(1):102-124. doi: 10.1002/sim.9944. Epub 2023 Nov 3.

Abstract

Human microbiome research has gained increasing importance due to its critical roles in comprehending human health and disease. Within the realm of microbiome research, the data generated often involves operational taxonomic unit counts, which can frequently present challenges such as over-dispersion and zero-inflation. To address dispersion-related concerns, the generalized Poisson model offers a flexible solution, effectively handling data characterized by over-dispersion, equi-dispersion, and under-dispersion. Furthermore, the realm of zero-inflated generalized Poisson models provides a strategic avenue to simultaneously tackle both over-dispersion and zero-inflation. The phenomenon of zero-inflation frequently stems from the heterogeneous nature of study populations. It emerges when specific microbial taxa fail to thrive in the microbial community of certain subjects, consequently resulting in a consistent count of zeros for these individuals. This subset of subjects represents a latent class, where their zeros originate from the genuine absence of the microbial taxa. In this paper, we introduce a novel testing methodology designed to uncover such latent classes within generalized Poisson regression models. We establish a closed-form test statistic and deduce its asymptotic distribution based on estimating equations. To assess its efficacy, we conduct an extensive array of simulation studies, and further apply the test to detect latent classes in human gut microbiome data from the Bogalusa Heart Study.

摘要

由于人类微生物组研究在理解人类健康和疾病方面的关键作用,其重要性日益增加。在微生物组研究领域,生成的数据通常涉及操作分类单元计数,这些计数经常会出现过度离散和零膨胀等问题。为了解决与离散相关的问题,广义泊松模型提供了一种灵活的解决方案,能够有效地处理具有过度离散、等离散和欠离散特征的数据。此外,零膨胀广义泊松模型领域提供了一种策略途径,可以同时解决过度离散和零膨胀问题。零膨胀现象通常源于研究人群的异质性。当特定的微生物类群在某些个体的微生物群落中无法茁壮成长时,就会出现零膨胀现象,导致这些个体的计数始终为零。这些个体构成了一个潜在类别,其零值源于这些微生物类群的真实缺失。在本文中,我们引入了一种新的测试方法,旨在揭示广义泊松回归模型中的这种潜在类别。我们建立了一个封闭形式的检验统计量,并根据估计方程推导出其渐近分布。为了评估其效果,我们进行了广泛的模拟研究,并进一步将该检验应用于检测 Bogalusa 心脏研究中人类肠道微生物组数据中的潜在类别。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验