Suppr超能文献

零膨胀泊松因子模型及其在微生物组读频数中的应用。

Zero-inflated Poisson factor model with application to microbiome read counts.

机构信息

Department of Biostatistics, Mailman School of Public Health, Columbia University, New York.

Division of Epidemiology, School of Public Health, University of Minnesota, Minneapolis, Minnesota.

出版信息

Biometrics. 2021 Mar;77(1):91-101. doi: 10.1111/biom.13272. Epub 2020 May 4.

Abstract

Dimension reduction of high-dimensional microbiome data facilitates subsequent analysis such as regression and clustering. Most existing reduction methods cannot fully accommodate the special features of the data such as count-valued and excessive zero reads. We propose a zero-inflated Poisson factor analysis model in this paper. The model assumes that microbiome read counts follow zero-inflated Poisson distributions with library size as offset and Poisson rates negatively related to the inflated zero occurrences. The latent parameters of the model form a low-rank matrix consisting of interpretable loadings and low-dimensional scores that can be used for further analyses. We develop an efficient and robust expectation-maximization algorithm for parameter estimation. We demonstrate the efficacy of the proposed method using comprehensive simulation studies. The application to the Oral Infections, Glucose Intolerance, and Insulin Resistance Study provides valuable insights into the relation between subgingival microbiome and periodontal disease.

摘要

高维微生物组数据的降维有助于后续的分析,如回归和聚类。大多数现有的降维方法不能充分适应数据的特殊特征,如计数值和过多的零读数。我们在本文中提出了一个零膨胀泊松因子分析模型。该模型假设微生物组读数遵循零膨胀泊松分布,以库大小作为偏移量,泊松率与膨胀零出现次数负相关。模型的潜在参数形成一个低秩矩阵,由可解释的加载和低维分数组成,可用于进一步的分析。我们开发了一种高效而稳健的期望最大化算法来进行参数估计。我们使用全面的模拟研究证明了所提出方法的有效性。对口腔感染、葡萄糖耐量和胰岛素抵抗研究的应用为龈下微生物组与牙周病之间的关系提供了有价值的见解。

相似文献

引用本文的文献

5
Applications and Comparison of Dimensionality Reduction Methods for Microbiome Data.微生物组数据降维方法的应用与比较
Front Bioinform. 2022 Feb 24;2:821861. doi: 10.3389/fbinf.2022.821861. eCollection 2022.

本文引用的文献

2
Periodontitis and the microbiome: a systematic review and meta-analysis.牙周炎与微生物组:一项系统综述和荟萃分析
Minerva Stomatol. 2018 Dec;67(6):250-258. doi: 10.23736/S0026-4970.18.04198-5. Epub 2018 Sep 10.
3
Exponential Family Functional data analysis via a low-rank model.基于低秩模型的指数族函数数据分析
Biometrics. 2018 Dec;74(4):1301-1310. doi: 10.1111/biom.12885. Epub 2018 May 8.
9
Waste not, want not: why rarefying microbiome data is inadmissible.不浪费,不匮乏:为何微生物组数据稀疏化不可取。
PLoS Comput Biol. 2014 Apr 3;10(4):e1003531. doi: 10.1371/journal.pcbi.1003531. eCollection 2014 Apr.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验