Hueckel Theodore, Lewis Diana J, Mertiri Alket, Carter David J D, Macfarlane Robert J
Department of Materials Science and Engineering, Massachusetts Institute of Technology (MIT), 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.
The Charles Stark Draper Laboratory, Inc., 555 Technology Square, Cambridge, Massachusetts 02139, United States.
ACS Nano. 2023 Nov 14;17(21):22121-22128. doi: 10.1021/acsnano.3c09401. Epub 2023 Nov 3.
Colloidal crystallization provides a means to synthesize hierarchical nanostructures by design and to use these complex structures for nanodevice fabrication. In particular, DNA provides a means to program interactions between particles with high specificity, thereby enabling the formation of particle superlattice crystallites with tailored unit cell geometries and surface faceting. However, while DNA provides precise control of particle-particle bonding interactions, it does not inherently present a means of controlling higher-level structural features such as the size, shape, position, or orientation of a colloidal crystallite. While altering assembly parameters such as temperature or concentration can enable limited control of crystallite size and geometry, integrating colloidal assemblies into nanodevices requires better tools to manipulate higher-order structuring and improved understanding of how these tools control the fundamental kinetics and mechanisms of colloidal crystal growth. In this work, photolithography is used to produce patterned substrates that can manipulate the placement, size, dispersity, and orientation of colloidal crystals. By adjusting aspects of the pattern, such as feature size and separation, we reveal a diffusion-limited mechanism governing crystal nucleation and growth. Leveraging this insight, patterns are designed that can produce wafer-scale substrates with arrays of nanoparticle superlattices of uniform size and shape. These design principles therefore bridge a gap between a fundamental understanding of nanoparticle assembly and the fabrication of nanostructures compatible with functional devices.
胶体结晶提供了一种通过设计来合成分级纳米结构并将这些复杂结构用于纳米器件制造的方法。特别是,DNA提供了一种以高特异性对粒子间相互作用进行编程的手段,从而能够形成具有定制晶胞几何形状和表面刻面的粒子超晶格微晶。然而,虽然DNA能精确控制粒子与粒子之间的键合相互作用,但它本身并没有提供一种控制更高层次结构特征(如胶体微晶的尺寸、形状、位置或取向)的方法。虽然改变诸如温度或浓度等组装参数可以对微晶尺寸和几何形状进行有限的控制,但将胶体组装体集成到纳米器件中需要更好的工具来操纵更高阶的结构,并需要更深入地了解这些工具如何控制胶体晶体生长的基本动力学和机制。在这项工作中,光刻技术被用于制造能够操纵胶体晶体的放置、尺寸、分散性和取向的图案化衬底。通过调整图案的各个方面,如特征尺寸和间距,我们揭示了一种控制晶体成核和生长的扩散限制机制。利用这一见解,设计出了能够生产具有均匀尺寸和形状的纳米粒子超晶格阵列的晶圆级衬底的图案。因此,这些设计原则弥合了对纳米粒子组装的基本理解与与功能器件兼容的纳米结构制造之间的差距。