Suppr超能文献

在具有逻辑源的抛物-椭圆型凯勒-塞格尔系统中,趋化作用会加快还是减缓空间扩散?

Can chemotaxis speed up or slow down the spatial spreading in parabolic-elliptic Keller-Segel systems with logistic source?

作者信息

Salako Rachidi B, Shen Wenxian, Xue Shuwen

机构信息

Department of Mathematics, The Ohio State University, Columbus, OH, 43210-1174, USA.

Department of Mathematics and Statistics, Auburn University, Auburn, AL, 36849, USA.

出版信息

J Math Biol. 2019 Sep;79(4):1455-1490. doi: 10.1007/s00285-019-01400-0. Epub 2019 Jul 19.

Abstract

The current paper is concerned with the spatial spreading speed and minimal wave speed of the following Keller-Segel chemoattraction system, [Formula: see text]where [Formula: see text], a, b, [Formula: see text], and [Formula: see text] are positive constants. Assume [Formula: see text] . Then if in addition [Formula: see text] holds, it is proved that [Formula: see text] is the spreading speed of the solutions of (0.1) with nonnegative continuous initial function [Formula: see text] with nonempty compact support, that is, [Formula: see text]and [Formula: see text]where [Formula: see text] is the unique global classical solution of (0.1) with [Formula: see text]. It is also proved that, if [Formula: see text] and [Formula: see text] holds, then [Formula: see text] is the minimal speed of the traveling wave solutions of (0.1) connecting (0, 0) and [Formula: see text], that is, for any [Formula: see text], (0.1) has a traveling wave solution connecting (0, 0) and [Formula: see text] with speed c, and (0.1) has no such traveling wave solutions with speed less than [Formula: see text]. Note that [Formula: see text] is the spatial spreading speed as well as the minimal wave speed of the following Fisher-KPP equation, [Formula: see text]Hence, if [Formula: see text] and [Formula: see text], or [Formula: see text] and [Formula: see text], then the chemotaxis neither speeds up nor slows down the spatial spreading in (0.1).

摘要

本文关注如下凯勒 - 西格尔趋化系统的空间传播速度和最小波速:[公式:见原文],其中[公式:见原文],a、b、[公式:见原文]和[公式:见原文]为正的常数。假设[公式:见原文]。那么,若此外还满足[公式:见原文],则证明了[公式:见原文]是具有非负连续初始函数[公式:见原文]且具有非空紧支集的(0.1)的解的传播速度,即[公式:见原文]且[公式:见原文],其中[公式:见原文]是(0.1)在[公式:见原文]时的唯一全局经典解。还证明了,若[公式:见原文]且[公式:见原文]成立,则[公式:见原文]是(0.1)连接(0, 0)和[公式:见原文]的行波解的最小速度,即对于任意[公式:见原文],(0.1)有一个速度为c且连接(0, 0)和[公式:见原文]的行波解,并且(0.1)没有速度小于[公式:见原文]的此类行波解。注意到[公式:见原文]是如下费希尔 - KPP方程的空间传播速度以及最小波速:[公式:见原文]因此,若[公式:见原文]且[公式:见原文],或者[公式:见原文]且[公式:见原文],则趋化作用既不加速也不减缓(0.1)中的空间传播。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验