Suppr超能文献

非小细胞肺癌临床试验中预后生物标志物的早期趋势与总生存期的相关性。

Correlation Between Early Trends of a Prognostic Biomarker and Overall Survival in Non-Small-Cell Lung Cancer Clinical Trials.

机构信息

Data & Analytics, Pharmaceutical Research and Early Development, Roche Innovation Center Munich (RICM), Penzberg, Germany.

Computational Health Center, Helmholtz Munich, Munich, Germany.

出版信息

JCO Clin Cancer Inform. 2023 Sep;7:e2300062. doi: 10.1200/CCI.23.00062.

Abstract

PURPOSE

Overall survival (OS) is the primary end point in phase III oncology trials. Given low success rates, surrogate end points, such as progression-free survival or objective response rate, are used in early go/no-go decision making. Here, we investigate whether early trends of OS prognostic biomarkers, such as the ROPRO and DeepROPRO, can also be used for this purpose.

METHODS

Using real-world data, we emulated a series of 12 advanced non-small-cell lung cancer (aNSCLC) clinical trials, originally conducted by six different sponsors and evaluated four different mechanisms, in a total of 19,920 individuals. We evaluated early trends (until 6 months) of the OS biomarker alongside early OS within the joint model (JM) framework. Study-level estimates of early OS and ROPRO trends were correlated against the actual final OS hazard ratios (HRs).

RESULTS

We observed a strong correlation between the JM estimates and final OS HR at 3 months (adjusted = 0.88) and at 6 months (adjusted = 0.85). In the leave-one-out analysis, there was a low overall prediction error of the OS HR at both 3 months (root-mean-square error [RMSE] = 0.11) and 6 months (RMSE = 0.12). In addition, at 3 months, the absolute prediction error of the OS HR was lower than 0.05 for three trials.

CONCLUSION

We describe a pipeline to predict trial OS HRs using emulated aNSCLC studies and their early OS and OS biomarker trends. The method has the potential to accelerate and improve decision making in drug development.

摘要

目的

总生存期(OS)是 III 期肿瘤学试验的主要终点。鉴于低成功率,替代终点,如无进展生存期或客观缓解率,用于早期去留决策。在这里,我们研究了 OS 预后生物标志物(如 ROPRO 和 DeepROPRO)的早期趋势是否也可用于此目的。

方法

使用真实世界数据,我们模拟了一系列由六个不同赞助商进行的 12 项晚期非小细胞肺癌(aNSCLC)临床试验,评估了四种不同机制,总共涉及 19920 人。我们在联合模型(JM)框架内评估了 OS 生物标志物的早期趋势(直至 6 个月)以及早期 OS。研究水平的早期 OS 和 ROPRO 趋势估计与实际最终 OS 风险比(HR)相关联。

结果

我们观察到 JM 估计值与 3 个月(调整 = 0.88)和 6 个月(调整 = 0.85)的最终 OS HR 之间存在很强的相关性。在留一法分析中,OS HR 的总体预测误差较低,在 3 个月时为 0.11(均方根误差[RMSE]),在 6 个月时为 0.12。此外,在 3 个月时,有三项试验的 OS HR 的绝对预测误差低于 0.05。

结论

我们描述了一种使用模拟 aNSCLC 研究及其早期 OS 和 OS 生物标志物趋势来预测试验 OS HR 的管道。该方法有可能加速和改善药物开发中的决策。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/af98/10730042/4fc0725073b9/cci-7-e2300062-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验