Feng Sihua, Duan Hengli, Tan Hao, Hu Fengchun, Liu Chaocheng, Wang Yao, Li Zhi, Cai Liang, Cao Yuyang, Wang Chao, Qi Zeming, Song Li, Liu Xuguang, Sun Zhihu, Yan Wensheng
National Synchrotron Radiation Laboratory, University of Science and Technology of China, 230026, Hefei, Anhui, China.
Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, 230026, Hefei, Anhui, China.
Nat Commun. 2023 Nov 3;14(1):7063. doi: 10.1038/s41467-023-42844-9.
The development of two-dimensional (2D) magnetic semiconductors with room-temperature ferromagnetism is a significant challenge in materials science and is important for the development of next-generation spintronic devices. Herein, we demonstrate that a 2D semiconducting antiferromagnetic Cu-MOF can be endowed with intrinsic room-temperature ferromagnetic coupling using a ligand cleavage strategy to regulate the inner magnetic interaction within the Cu dimers. Using the element-selective X-ray magnetic circular dichroism (XMCD) technique, we provide unambiguous evidence for intrinsic ferromagnetism. Exhaustive structural characterizations confirm that the change of magnetic coupling is caused by the increased distance between Cu atoms within a Cu dimer. Theoretical calculations reveal that the ferromagnetic coupling is enhanced with the increased Cu-Cu distance, which depresses the hybridization between 3d orbitals of nearest Cu atoms. Our work provides an effective avenue to design and fabricate MOF-based semiconducting room-temperature ferromagnetic materials and promotes their practical applications in next-generation spintronic devices.
开发具有室温铁磁性的二维(2D)磁性半导体是材料科学中的一项重大挑战,对下一代自旋电子器件的发展具有重要意义。在此,我们证明了一种二维半导体反铁磁铜基金属有机框架(Cu-MOF)可以通过配体裂解策略赋予其内在的室温铁磁耦合,以调节铜二聚体内部的磁相互作用。使用元素选择性X射线磁圆二色性(XMCD)技术,我们为内在铁磁性提供了明确的证据。详尽的结构表征证实,磁耦合的变化是由铜二聚体内铜原子之间距离的增加引起的。理论计算表明,铁磁耦合随着铜-铜距离的增加而增强,这抑制了最近邻铜原子3d轨道之间的杂化。我们的工作为设计和制造基于MOF的半导体室温铁磁材料提供了一条有效途径,并促进了它们在下一代自旋电子器件中的实际应用。