Wang Yong, Xu Wei, Yang Dingyi, Zhang Yu, Xu Yongjie, Cheng Zixuan, Mi Xuke, Wu Yizhang, Liu Yan, Hao Yue, Han Gen-Quan
School of Microelectronics, Academy of Advanced Interdisciplinary Research, Xidian University, Xi'an 710071, People's Republic of China.
Hangzhou Institute of Technology, Xidian University, Hangzhou 311200, People's Republic of China.
ACS Nano. 2023 Dec 12;17(23):24320-24328. doi: 10.1021/acsnano.3c10218. Epub 2023 Nov 27.
Two-dimensional (2D) room-temperature (RT) ferromagnetic materials have amassed considerable interest in the field of fundamental physics for applications in next-generation spintronic devices owing to their physical properties. However, realizing strong RT ferromagnetism and a high Curie temperature () in these 2D magnetic materials remains challenging. Herein, we develop a 2D MnB nanosheet for known 2D ferromagnets that demonstrates strong RT ferromagnetism and a record-high above-RT of ∼585.9 K. Through magnetic force microscopy, clear evidence of ferromagnetic behavior is observed at room temperature. Structural characterization and density functional theory calculations further reveal that (i) after exfoliation of bulk, -OH functional groups were introduced in addition to Mn-B bonds being formed, which increases MnB nanosheet to 585.9 K and (ii) the d↑ spin configuration of Mn mainly contributed to the magnetic moment of MnB, and the hybridization between the d (d) and d orbitals of the Mn atom provides a large contribution to magnetic anisotropy, which stabilizes the magnetic property of MnB. Our findings establish a strong experimental foundation for 2D MnB nanosheets as ideal materials for the construction of spintronic devices.
二维(2D)室温(RT)铁磁材料因其物理特性,在下一代自旋电子器件应用的基础物理学领域引起了广泛关注。然而,在这些二维磁性材料中实现强室温铁磁性和高居里温度( )仍然具有挑战性。在此,我们针对已知的二维铁磁体开发了一种二维MnB纳米片,它表现出强室温铁磁性以及创纪录的约585.9 K的高于室温的居里温度。通过磁力显微镜,在室温下观察到了铁磁行为的明确证据。结构表征和密度泛函理论计算进一步揭示:(i)块状材料剥离后,除了形成Mn - B键外,还引入了 - OH官能团,这将MnB纳米片的居里温度提高到585.9 K;(ii)Mn的d↑自旋构型对MnB的磁矩起主要作用,并且Mn原子的d(d)和d轨道之间的杂化对磁各向异性有很大贡献,这稳定了MnB的磁性。我们的研究结果为二维MnB纳米片作为构建自旋电子器件的理想材料奠定了坚实的实验基础。