Bioinformatics and Computational Biology Lab, Amrita School of Nanosciences and Molecular Medicine, India.
Department of Microbiology, Amrita Institute of Medical Sciences and Research Centre, Amrita Vishwa Vidyapeetham, Kochi 682 041, Kerala State, India.
Int J Biol Macromol. 2024 Jan;254(Pt 2):127842. doi: 10.1016/j.ijbiomac.2023.127842. Epub 2023 Nov 3.
Staphylococcus aureus (S. aureus) is one of the common causes of implant associated biofilm infections and their biofilms are resistant to antibiotics. S. aureus amidase (AM) protein, a cell wall hydrolase that cleaves the amide bond between N-acetylmuramic acid and L-alanine residue of the stem peptide, is several fold over-expressed under biofilm conditions. Previous studies demonstrated an autolysin mutant in S. aureus that lacks the AM protein, is highly impaired in biofilm development. We carried out a structure-based small molecule design using the crystal structure of AM protein catalytic domain to identify inhibitors that can block amidase activity and therefore inhibits S. aureus biofilm formation. Sequential virtual screening followed by pharmacokinetic analysis and bioassay studies filtered 25 small molecules from different databases. Two compounds from the SPECS database, SPECS-1 and SPECS-2, were selected based on the best docking score and minimum biofilm inhibitory concentration towards S. aureus biofilms. SPECS-1 and SPECS-2 were further tested for their structural/energetic stability in complex with the AM protein using molecular dynamics simulation and MM-GBSA techniques. In vitro, biofilm inhibition studies on different surfaces confirmed that treatment with SPECS-1 and SPECS-2 at a concentration of 250 μg/ml exhibited significant prevention and disruption of S. aureus biofilms. Finally, the in vitro anti-biofilm activities of these two compounds were validated against Methicillin-resistant S. aureus clinical isolates. We concluded that the discovered compounds SPECS-1 and SPECS-2 are safe and exhibit biofilm preventive and disruption activity for inhibiting the S. aureus biofilms and hence can be used to treat implant-associated biofilm infections.
金黄色葡萄球菌(S. aureus)是与植入物相关的生物膜感染的常见原因之一,其生物膜对抗生素具有抗性。金黄色葡萄球菌 amidase(AM)蛋白是一种细胞壁水解酶,可裂解肽聚糖的 N-乙酰胞壁酸和 L-丙氨酸残基之间的酰胺键,在生物膜条件下表达量增加数倍。先前的研究表明,金黄色葡萄球菌的一种缺乏 AM 蛋白的自溶酶突变体在生物膜发育方面受到严重损害。我们使用 AM 蛋白催化结构域的晶体结构进行了基于结构的小分子设计,以鉴定可阻断酰胺酶活性从而抑制金黄色葡萄球菌生物膜形成的抑制剂。通过顺序虚拟筛选,随后进行药代动力学分析和生物测定研究,从不同的数据库中筛选出 25 种小分子。基于最佳对接评分和对金黄色葡萄球菌生物膜的最小生物膜抑制浓度,从 SPECS 数据库中选择了两种化合物 SPECS-1 和 SPECS-2。SPECS-1 和 SPECS-2 进一步通过分子动力学模拟和 MM-GBSA 技术测试了它们与 AM 蛋白结合的结构/能量稳定性。在体外,不同表面的生物膜抑制研究证实,以 250μg/ml 的浓度用 SPECS-1 和 SPECS-2 处理可显著预防和破坏金黄色葡萄球菌生物膜。最后,针对耐甲氧西林金黄色葡萄球菌临床分离株验证了这两种化合物的体外抗生物膜活性。我们得出结论,发现的化合物 SPECS-1 和 SPECS-2 安全且具有生物膜预防和破坏活性,可用于抑制金黄色葡萄球菌生物膜,从而可用于治疗与植入物相关的生物膜感染。