Suppr超能文献

一种基于阴道镜图像机器学习来检测宫颈病变的分割模型。

A segmentation model to detect cevical lesions based on machine learning of colposcopic images.

作者信息

Li Zhen, Zeng Chu-Mei, Dong Yan-Gang, Cao Ying, Yu Li-Yao, Liu Hui-Ying, Tian Xun, Tian Rui, Zhong Chao-Yue, Zhao Ting-Ting, Liu Jia-Shuo, Chen Ye, Li Li-Fang, Huang Zhe-Ying, Wang Yu-Yan, Hu Zheng, Zhang Jingjing, Liang Jiu-Xing, Zhou Ping, Lu Yi-Qin

机构信息

Department of Gynecological Oncology, Zhongnan Hospital of Wuhan University, Wuhan, Hubei, 430071, China.

Department of Obstetrics and gynecology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510062, China.

出版信息

Heliyon. 2023 Oct 20;9(11):e21043. doi: 10.1016/j.heliyon.2023.e21043. eCollection 2023 Nov.

Abstract

BACKGROUND

Semantic segmentation is crucial in medical image diagnosis. Traditional deep convolutional neural networks excel in image classification and object detection but fall short in segmentation tasks. Enhancing the accuracy and efficiency of detecting high-level cervical lesions and invasive cancer poses a primary challenge in segmentation model development.

METHODS

Between 2018 and 2022, we retrospectively studied a total of 777 patients, comprising 339 patients with high-level cervical lesions and 313 patients with microinvasive or invasive cervical cancer. Overall, 1554 colposcopic images were put into the DeepLabv3+ model for learning. Accuracy, Precision, Specificity, and mIoU were employed to evaluate the performance of the model in the prediction of cervical high-level lesions and cancer.

RESULTS

Experiments showed that our segmentation model had better diagnosis efficiency than colposcopic experts and other artificial intelligence models, and reached Accuracy of 93.29 %, Precision of 87.2 %, Specificity of 90.1 %, and mIoU of 80.27 %, respectively.

CONCLUTION

The DeepLabv3+ model had good performance in the segmentation of cervical lesions in colposcopic post-acetic-acid images and can better assist colposcopists in improving the diagnosis.

摘要

背景

语义分割在医学图像诊断中至关重要。传统的深度卷积神经网络在图像分类和目标检测方面表现出色,但在分割任务中存在不足。提高高级别宫颈病变和浸润性癌检测的准确性和效率是分割模型开发中的主要挑战。

方法

2018年至2022年期间,我们回顾性研究了777例患者,其中包括339例高级别宫颈病变患者和313例微浸润或浸润性宫颈癌患者。总共1554张阴道镜图像被放入DeepLabv3+模型进行学习。采用准确率、精确率、特异性和平均交并比来评估该模型在预测宫颈高级别病变和癌症方面的性能。

结果

实验表明,我们的分割模型比阴道镜专家和其他人工智能模型具有更好的诊断效率,准确率分别达到93.29%、精确率87.2%、特异性90.1%和平均交并比80.27%。

结论

DeepLabv3+模型在醋酸白后阴道镜图像的宫颈病变分割中表现良好,能够更好地协助阴道镜检查人员提高诊断水平。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/790d/10623278/f6a853c00b8b/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验