Krithika Alias AnbuDevi M, Suganthi K
Vellore Institute of Technology, Chennai 600127, India.
Diagnostics (Basel). 2022 Dec 6;12(12):3064. doi: 10.3390/diagnostics12123064.
In biomedical image analysis, information about the location and appearance of tumors and lesions is indispensable to aid doctors in treating and identifying the severity of diseases. Therefore, it is essential to segment the tumors and lesions. MRI, CT, PET, ultrasound, and X-ray are the different imaging systems to obtain this information. The well-known semantic segmentation technique is used in medical image analysis to identify and label regions of images. The semantic segmentation aims to divide the images into regions with comparable characteristics, including intensity, homogeneity, and texture. UNET is the deep learning network that segments the critical features. However, UNETs basic architecture cannot accurately segment complex MRI images. This review introduces the modified and improved models of UNET suitable for increasing segmentation accuracy.
在生物医学图像分析中,肿瘤和病变的位置及外观信息对于帮助医生治疗和识别疾病严重程度而言不可或缺。因此,对肿瘤和病变进行分割至关重要。磁共振成像(MRI)、计算机断层扫描(CT)、正电子发射断层显像(PET)、超声和X射线是获取此类信息的不同成像系统。医学图像分析中采用了著名的语义分割技术来识别和标记图像区域。语义分割旨在将图像划分为具有可比特征的区域,包括强度、均匀性和纹理。U-Net是用于分割关键特征的深度学习网络。然而,U-Net的基本架构无法准确分割复杂的MRI图像。本综述介绍了适用于提高分割精度的U-Net改进模型。