Suppr超能文献

Simulation by two calcium store models of myocardial dynamic properties: potentiation, staircase, and biphasic tension development.

作者信息

Wussling M, Szymanski G

出版信息

Gen Physiol Biophys. 1986 Apr;5(2):135-52.

PMID:3792818
Abstract

Most considerations and models concerning myocardial dynamic properties e.g. potentiation and staircase, are based upon the existence of storage structures in the heart muscle cell. The phenomenon of biphasic tension development (or two-component contraction) in heart muscle preparations of several mammalian species suggests that the sarcoplasmic reticulum is one, but by no means the major, source of activator calcium for the contractile system. The simulation of dynamic properties including biphasic tension development was performed in two steps by a simple "two-Ca store-model" and by an "expanded two-Ca store-model" with following results: Increasing potentiation indicated a decrease in the degree of coupling between the Ca stores. A shift of the interval strength curve to lower intervals as well as a decrease of the steady state contraction height implies a decrease of both, the coupling and the leakage time constant. There was no standard relation between staircase phenomena and structure parameters. Analog displays showed a late (or second) component at prolongated stimulation intervals, in the transient phase after a rest period, in the case of perfectly coupled or uncoupled stores, and at great time constant tau p (which characterizes the calcium pump activity). It is concluded that the late component of biphasic tension development is due to direct activation by the transsarcolemmal Ca flux of the myofilaments, whereas the early component is caused by the release of stored calcium. In the absence of an early component neither potentiation nor marked treppe may be expected.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验