Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, 17121 Stockholm, Sweden.
Department of Medical Biochemistry, Faculty of Medicine, Zonguldak Bulent Ecevit University, 67630 Zonguldak, Turkey.
Bioinformatics. 2023 Nov 1;39(11). doi: 10.1093/bioinformatics/btad666.
Many approaches in systems biology have been applied in drug repositioning due to the increased availability of the omics data and computational biology tools. Using a multi-omics integrated network, which contains information of various biological interactions, could offer a more comprehensive inspective and interpretation for the drug mechanism of action (MoA).
We developed a computational pipeline for dissecting the hidden MoAs of drugs (Open MoA). Our pipeline computes confidence scores to edges that represent connections between genes/proteins in the integrated network. The interactions showing the highest confidence score could indicate potential drug targets and infer the underlying molecular MoAs. Open MoA was also validated by testing some well-established targets. Additionally, we applied Open MoA to reveal the MoA of a repositioned drug (JNK-IN-5A) that modulates the PKLR expression in HepG2 cells and found STAT1 is the key transcription factor. Overall, Open MoA represents a first-generation tool that could be utilized for predicting the potential MoA of repurposed drugs and dissecting de novo targets for developing effective treatments.
Source code is available at https://github.com/XinmengLiao/Open_MoA.
由于组学数据和计算生物学工具的可用性增加,系统生物学中的许多方法已被应用于药物重定位。使用包含各种生物相互作用信息的多组学综合网络,可以为药物作用机制(MoA)提供更全面的观察和解释。
我们开发了一种用于剖析药物隐藏作用机制的计算管道(Open MoA)。我们的管道计算表示综合网络中基因/蛋白质之间连接的边的置信度得分。显示最高置信度得分的相互作用可能表明潜在的药物靶点,并推断潜在的分子 MoA。Open MoA 还通过测试一些成熟的靶点进行了验证。此外,我们应用 Open MoA 来揭示重新定位药物(JNK-IN-5A)的作用机制,该药物调节 HepG2 细胞中 PKLR 的表达,发现 STAT1 是关键转录因子。总的来说,Open MoA 代表了一种第一代工具,可用于预测重新利用药物的潜在作用机制,并剖析开发有效治疗方法的新靶标。
源代码可在 https://github.com/XinmengLiao/Open_MoA 获得。