Department of Computer Science and Engineering, Korea University, Seoul, Republic of Korea.
Interdisciplinary Graduate Program in Bioinformatics, Korea University, Seoul, Republic of Korea.
Bioinformatics. 2021 Jul 12;37(Suppl_1):i376-i382. doi: 10.1093/bioinformatics/btab275.
Identifying mechanism of actions (MoA) of novel compounds is crucial in drug discovery. Careful understanding of MoA can avoid potential side effects of drug candidates. Efforts have been made to identify MoA using the transcriptomic signatures induced by compounds. However, these approaches fail to reveal MoAs in the absence of actual compound signatures.
We present MoAble, which predicts MoAs without requiring compound signatures. We train a deep learning-based coembedding model to map compound signatures and compound structure into the same embedding space. The model generates low-dimensional compound signature representation from the compound structures. To predict MoAs, pathway enrichment analysis is performed based on the connectivity between embedding vectors of compounds and those of genetic perturbation. Results show that MoAble is comparable to the methods that use actual compound signatures. We demonstrate that MoAble can be used to reveal MoAs of novel compounds without measuring compound signatures with the same prediction accuracy as that with measuring them.
MoAble is available at https://github.com/dmis-lab/moable.
Supplementary data are available at Bioinformatics online.
确定新化合物的作用机制(MoA)对于药物发现至关重要。仔细了解 MoA 可以避免候选药物的潜在副作用。已经做出了许多努力来使用化合物诱导的转录组特征来识别 MoA。然而,在没有实际化合物特征的情况下,这些方法无法揭示 MoA。
我们提出了 MoAble,它不需要化合物特征就可以预测 MoA。我们训练了一个基于深度学习的共嵌入模型,将化合物特征和化合物结构映射到同一个嵌入空间中。该模型从化合物结构中生成低维化合物特征表示。为了预测 MoA,基于化合物和遗传扰动嵌入向量之间的连接性进行通路富集分析。结果表明,MoAble 与使用实际化合物特征的方法相当。我们证明,MoAble 可以用于揭示没有测量化合物特征的新型化合物的 MoA,并且其预测准确性与测量它们的方法相同。
MoAble 可在 https://github.com/dmis-lab/moable 上获得。
补充数据可在生物信息学在线获得。