Suppr超能文献

使用条件生成对抗网络的足部溃疡自动分割(AFSegGAN):一种伤口管理系统。

Automatic foot ulcer segmentation using conditional generative adversarial network (AFSegGAN): A wound management system.

作者信息

P Jishnu, B K Shreyamsha Kumar, Jayaraman Srinivasan

机构信息

TCS Research, Digital Medicine and Medical Technology- B&T Group, TATA Consultancy Services, Bangalore, Karnataka, India.

TCS Research, Digital Medicine and Medical Technology- B&T Group, TATA Consultancy Services, Cincinnati, Ohio, United States of America.

出版信息

PLOS Digit Health. 2023 Nov 6;2(11):e0000344. doi: 10.1371/journal.pdig.0000344. eCollection 2023 Nov.

Abstract

Effective wound care is essential to prevent further complications, promote healing, and reduce the risk of infection and other health issues. Chronic wounds, particularly in older adults, patients with disabilities, and those with pressure, venous, or diabetic foot ulcers, cause significant morbidity and mortality. Due to the positive trend in the number of individuals with chronic wounds, particularly among the growing elderly and diabetes populations, it is imperative to develop novel technologies and practices for the best practice clinical management of chronic wounds to minimize the potential health and economic burdens on society. As wound care is managed in hospitals and community care, it is crucial to have quantitative metrics like wound boundary and morphological features. The traditional visual inspection technique is purely subjective and error-prone, and digitization provides an appealing alternative. Various deep-learning models have earned confidence; however, their accuracy primarily relies on the image quality, the dataset size to learn the features, and experts' annotation. This work aims to develop a wound management system that automates wound segmentation using a conditional generative adversarial network (cGAN) and estimate the wound morphological parameters. AFSegGAN was developed and validated on the MICCAI 2021-foot ulcer segmentation dataset. In addition, we use adversarial loss and patch-level comparison at the discriminator network to improve the segmentation performance and balance the GAN network training. Our model outperformed state-of-the-art methods with a Dice score of 93.11% and IoU of 99.07%. The proposed wound management system demonstrates its abilities in wound segmentation and parameter estimation, thereby reducing healthcare workers' efforts to diagnose or manage wounds and facilitating remote healthcare.

摘要

有效的伤口护理对于预防进一步的并发症、促进愈合以及降低感染和其他健康问题的风险至关重要。慢性伤口,尤其是在老年人、残疾患者以及患有压疮、静脉性或糖尿病足溃疡的人群中,会导致严重的发病和死亡。由于慢性伤口患者数量呈上升趋势,特别是在不断增长的老年人群体和糖尿病患者群体中,开发用于慢性伤口最佳临床管理的新技术和实践方法以尽量减少对社会潜在的健康和经济负担势在必行。由于伤口护理在医院和社区护理中进行管理,拥有诸如伤口边界和形态特征等定量指标至关重要。传统的目视检查技术纯粹是主观的且容易出错,而数字化提供了一种有吸引力的替代方法。各种深度学习模型已赢得信任;然而,它们的准确性主要依赖于图像质量、用于学习特征的数据集大小以及专家的注释。这项工作旨在开发一种伤口管理系统,该系统使用条件生成对抗网络(cGAN)自动进行伤口分割并估计伤口形态参数。AFSegGAN在MICCAI 2021足部溃疡分割数据集上进行了开发和验证。此外,我们在判别器网络中使用对抗损失和补丁级比较来提高分割性能并平衡GAN网络训练。我们的模型以93.11%的Dice分数和99.07%的IoU超过了现有最先进的方法。所提出的伤口管理系统展示了其在伤口分割和参数估计方面的能力,从而减少了医护人员诊断或管理伤口的工作量,并促进了远程医疗保健。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f69f/10627472/a39f6770df91/pdig.0000344.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验