Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Human Genetics, University of Michigan Medical School, Ann Arbor, MI 48109, USA.
Mutat Res Rev Mutat Res. 2023 Jul-Dec;792:108475. doi: 10.1016/j.mrrev.2023.108475. Epub 2023 Nov 4.
Chromosomal structural variation (SV) encompasses a heterogenous class of genetic variants that exerts strong influences on human health and disease. Despite their importance, many structural variants (SVs) have remained poorly characterized at even a basic level, a discrepancy predicated upon the technical limitations of prior genomic assays. However, recent advances in genomic technology can identify and localize SVs accurately, opening new questions regarding SV risk factors and their impacts in humans. Here, we first define and classify human SVs and their generative mechanisms, highlighting characteristics leveraged by various SV assays. We next examine the first-ever gapless assembly of the human genome and the technical process of assembling it, which required third-generation sequencing technologies to resolve structurally complex loci. The new portions of that "telomere-to-telomere" and subsequent pangenome assemblies highlight aspects of SV biology likely to develop in the near-term. We consider the strengths and limitations of the most promising new SV technologies and when they or longstanding approaches are best suited to meeting salient goals in the study of human SV in population-scale genomics research, clinical, and public health contexts. It is a watershed time in our understanding of human SV when new approaches are expected to fundamentally change genomic applications.
染色体结构变异 (SV) 包含了一大类遗传变异,它们对人类健康和疾病有着强烈的影响。尽管它们很重要,但许多结构变异 (SV) 甚至在基本水平上的特征仍然很差,这种差异是基于先前基因组检测技术的局限性。然而,基因组技术的最新进展可以准确地识别和定位 SV,这就提出了关于 SV 风险因素及其在人类中的影响的新问题。在这里,我们首先定义和分类人类 SV 及其产生机制,强调各种 SV 检测方法所利用的特征。接下来,我们研究了人类基因组的首次无间隙组装以及组装过程,这需要第三代测序技术来解决结构复杂的基因座。这些“端粒到端粒”和随后的泛基因组组装的新部分突出了 SV 生物学的一些方面,这些方面可能在近期内得到发展。我们考虑了最有前途的新 SV 技术的优缺点,以及在群体基因组学研究、临床和公共卫生背景下,何时以及何时最适合采用这些技术来满足研究人类 SV 的重要目标。当新方法有望从根本上改变基因组应用时,这是我们理解人类 SV 的一个分水岭时刻。