Efaw Corey M, Wu Qisheng, Gao Ningshengjie, Zhang Yugang, Zhu Haoyu, Gering Kevin, Hurley Michael F, Xiong Hui, Hu Enyuan, Cao Xia, Xu Wu, Zhang Ji-Guang, Dufek Eric J, Xiao Jie, Yang Xiao-Qing, Liu Jun, Qi Yue, Li Bin
Energy and Environmental Science and Technology Directorate, Idaho National Laboratory, Idaho Falls, ID, USA.
Micron School of Materials Science and Engineering, Boise State University, Boise, ID, USA.
Nat Mater. 2023 Dec;22(12):1531-1539. doi: 10.1038/s41563-023-01700-3. Epub 2023 Nov 6.
Liquid electrolytes in batteries are typically treated as macroscopically homogeneous ionic transport media despite having a complex chemical composition and atomistic solvation structures, leaving a knowledge gap of the microstructural characteristics. Here, we reveal a unique micelle-like structure in a localized high-concentration electrolyte, in which the solvent acts as a surfactant between an insoluble salt in a diluent. The miscibility of the solvent with the diluent and simultaneous solubility of the salt results in a micelle-like structure with a smeared interface and an increased salt concentration at the centre of the salt-solvent clusters that extends the salt solubility. These intermingling miscibility effects have temperature dependencies, wherein a typical localized high-concentration electrolyte peaks in localized cluster salt concentration near room temperature and is used to form a stable solid-electrolyte interphase on a Li metal anode. These findings serve as a guide to predicting a stable ternary phase diagram and connecting the electrolyte microstructure with electrolyte formulation and formation protocols of solid-electrolyte interphases for enhanced battery cyclability.
尽管电池中的液体电解质具有复杂的化学成分和原子溶剂化结构,但通常被视为宏观均匀的离子传输介质,这使得微观结构特征方面存在知识空白。在此,我们揭示了一种局部高浓度电解质中独特的胶束状结构,其中溶剂在稀释剂中的不溶性盐之间充当表面活性剂。溶剂与稀释剂的混溶性以及盐的同时溶解性导致形成具有模糊界面的胶束状结构,并且在盐 - 溶剂簇中心的盐浓度增加,从而扩展了盐的溶解度。这些相互混合的混溶效应具有温度依赖性,其中典型的局部高浓度电解质在室温附近的局部簇盐浓度达到峰值,并用于在锂金属阳极上形成稳定的固体电解质界面。这些发现为预测稳定的三元相图以及将电解质微观结构与固体电解质界面的电解质配方和形成方案相联系以提高电池循环性能提供了指导。