Suppr超能文献

非局部化电解质设计助力实现600瓦时/千克的锂金属软包电池。

Delocalized electrolyte design enables 600 Wh kg lithium metal pouch cells.

作者信息

Huang He, Hu Yitao, Hou Yajun, Wang Xingkai, Dong Qiujiang, Zhao Zhixin, Ji Mingfang, Zhang Wanxing, Li Jinyang, Xie Jianping, Guo Hao, Han Xiaopeng, Ouyang Xiaoping, Hu Wenbin

机构信息

Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Fuzhou, China.

Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore.

出版信息

Nature. 2025 Aug;644(8077):660-667. doi: 10.1038/s41586-025-09382-4. Epub 2025 Aug 13.

Abstract

The development of high-energy lithium metal batteries (LMBs) is essential for advances in next-generation energy storage and electric vehicle technologies. Nevertheless, the practical applications of LMBs are constrained by current electrolyte designs that inherently rely on dominant solvation structures, preventing transformative progress in performance optimization. Here, we address this limitation through a delocalized electrolyte design that fosters a more disordered solvation microenvironment, thereby mitigating dynamic barriers and stabilizing interphases. The resulting delocalized electrolyte delivers notable energy densities of 604.2 Wh kg in a 5.5-Ah LiNiCoMnO (Ni90)||Li pouch cell with a lean electrolyte design (1.0 g Ah) and 618.2 Wh kg in a 5.2-Ah Ni90||Li pouch cell with an ultralean electrolyte design (0.9 g Ah), maintaining significant cycle stability over 100 and 90 cycles, respectively. In addition, the 70-104 V NCM811||Li battery pack (3,904 Wh) exhibits a high energy density of 480.9 Wh kg and stable cycling over 25 cycles. These results demonstrate the need to circumvent inherent reliance on dominant solvation structures in electrolyte design to achieve the high-energy Battery600 and scalable Pack480 targets.

摘要

高能锂金属电池(LMBs)的发展对于下一代储能和电动汽车技术的进步至关重要。然而,LMBs的实际应用受到当前电解质设计的限制,这些设计本质上依赖于占主导地位的溶剂化结构,阻碍了性能优化方面的变革性进展。在此,我们通过一种离域化电解质设计来解决这一限制,该设计营造了一个更加无序的溶剂化微环境,从而减轻动态障碍并稳定界面。由此产生的离域化电解质在采用贫电解质设计(1.0 g Ah)的5.5 Ah LiNiCoMnO(Ni90)||Li软包电池中实现了604.2 Wh kg的显著能量密度,在采用超贫电解质设计(0.9 g Ah)的5.2 Ah Ni90||Li软包电池中实现了618.2 Wh kg的能量密度,分别在100次和90次循环中保持了显著的循环稳定性。此外,70 - 104 V的NCM811||Li电池组(3904 Wh)展现出480.9 Wh kg的高能量密度,并在25次循环中实现稳定循环。这些结果表明,在电解质设计中需要规避对占主导地位的溶剂化结构的固有依赖,以实现高能电池600和可扩展电池组480的目标。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验