Suppr超能文献

基于图像的农作物病害检测与联邦学习。

Image-based crop disease detection with federated learning.

机构信息

INSA CVL, University of Orleans, PRISME Laboratory EA 4229, 88 Boulevard Lahitolle, 18000, Bourges, France.

INSA CVL, University of Orleans, LIFO Laboratory EA 4022, 88 Boulevard Lahitolle, 18000, Bourges, France.

出版信息

Sci Rep. 2023 Nov 6;13(1):19220. doi: 10.1038/s41598-023-46218-5.

Abstract

Crop disease detection and management is critical to improving productivity, reducing costs, and promoting environmentally friendly crop treatment methods. Modern technologies, such as data mining and machine learning algorithms, have been used to develop automated crop disease detection systems. However, centralized approach to data collection and model training induces challenges in terms of data privacy, availability, and transfer costs. To address these challenges, federated learning appears to be a promising solution. In this paper, we explored the application of federated learning for crop disease classification using image analysis. We developed and studied convolutional neural network (CNN) models and those based on attention mechanisms, in this case vision transformers (ViT), using federated learning, leveraging an open access image dataset from the "PlantVillage" platform. Experiments conducted concluded that the performance of models trained by federated learning is influenced by the number of learners involved, the number of communication rounds, the number of local iterations and the quality of the data. With the objective of highlighting the potential of federated learning in crop disease classification, among the CNN models tested, ResNet50 performed better in several experiments than the other models, and proved to be an optimal choice, but also the most suitable for a federated learning scenario. The ViT_B16 and ViT_B32 Vision Transformers require more computational time, making them less suitable in a federated learning scenario, where computational time and communication costs are key parameters. The paper provides a state-of-the-art analysis, presents our methodology and experimental results, and concludes with ideas and future directions for our research on using federated learning in the context of crop disease classification.

摘要

作物病害检测与管理对于提高生产力、降低成本和推广环保型作物处理方法至关重要。现代技术,如数据挖掘和机器学习算法,已被用于开发自动化作物病害检测系统。然而,集中式的数据收集和模型训练方法在数据隐私、可用性和传输成本方面带来了挑战。为了解决这些挑战,联邦学习似乎是一种很有前途的解决方案。在本文中,我们探讨了使用图像分析进行作物病害分类的联邦学习应用。我们使用联邦学习开发和研究了卷积神经网络 (CNN) 模型和基于注意力机制的模型,在这种情况下是视觉转换器 (ViT),并利用来自“PlantVillage”平台的开放访问图像数据集进行了研究。实验结果表明,联邦学习训练的模型的性能受到参与学习者的数量、通信轮数、本地迭代次数和数据质量的影响。为了突出联邦学习在作物病害分类中的潜力,在所测试的 CNN 模型中,ResNet50 在多项实验中的表现优于其他模型,被证明是一个最佳选择,同时也是最适合联邦学习场景的选择。ViT_B16 和 ViT_B32 视觉转换器需要更多的计算时间,因此在联邦学习场景中不太适用,在这种场景中,计算时间和通信成本是关键参数。本文提供了一个最新的分析,介绍了我们的方法和实验结果,并提出了在作物病害分类的联邦学习背景下的研究思路和未来方向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9e7a/10628142/e6f2d249bace/41598_2023_46218_Fig7_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验