Suppr超能文献

使用联邦深度学习对全球数字高程模型进行空间插值。

Spatial interpolation of global DEM using federated deep learning.

作者信息

Huo Ziqiang, Wen Jiabao, Li Zhengjian, Chen Desheng, Xi Meng, Li Yang, Yang Jiachen

机构信息

School of Electrical and Information Engineering, Tianjin University, Tianjin, 300072, China.

College of Mechanical and Electrical Engineering, Shihezi University, Shihezi, 832003, China.

出版信息

Sci Rep. 2024 Sep 27;14(1):22089. doi: 10.1038/s41598-024-72807-z.

Abstract

The digital elevation model (DEM) provides important data support for 3D terrain modeling. However, due to the complex and changeable terrain in the real world and the high cost of field measurement, it is extremely difficult to obtain continuous and high-density elevation data directly. Therefore, it is necessary to rely on spatial interpolation technology to restore the DEM overall picture in the original sampling area. The traditional spatial interpolation method usually has the characteristics of low model complexity and high computational cost, which leads to low real-time performance and low precision of the interpolation process. The interpolation operation based on DEM data can be considered as a special image generation process where the input is a DEM image with missing values and the output is a complete DEM image. At present, a large number of studies have proved that deep learning methods are very effective in image generation tasks. However, the training of deep learning models requires the support of a large number of high-quality data sets. DEM data in various countries, especially in key regions, are usually restricted by privacy protection regulations and cannot be disclosed. The emergence of Federated Learning (FL) provides a new solution, which supports local training on multiple end nodes, without sending local data to a remote center server for centralized training, effectively protecting data privacy. In this study, we propose a DEM interpolation model based on FL and multiScale U-Net. The experimental results show that compared with the traditional method, this model has faster processing speed and lower interpolation precision. At the same time, this research result provides a new way for efficient and secure use of terrain information, especially in those application scenarios that have strict requirements for DEM data privacy and security.

摘要

数字高程模型(DEM)为三维地形建模提供了重要的数据支持。然而,由于现实世界中地形复杂多变,且野外测量成本高昂,直接获取连续且高密度的高程数据极为困难。因此,有必要依靠空间插值技术来恢复原始采样区域内的DEM全貌。传统的空间插值方法通常具有模型复杂度低、计算成本高的特点,这导致插值过程的实时性低且精度不高。基于DEM数据的插值操作可被视为一种特殊的图像生成过程,其中输入是带有缺失值的DEM图像,输出是完整的DEM图像。目前,大量研究已证明深度学习方法在图像生成任务中非常有效。然而,深度学习模型的训练需要大量高质量数据集的支持。各国的DEM数据,尤其是关键地区的数据,通常受到隐私保护法规的限制而无法公开。联邦学习(FL)的出现提供了一种新的解决方案,它支持在多个终端节点上进行本地训练,无需将本地数据发送到远程中心服务器进行集中训练,有效保护了数据隐私。在本研究中,我们提出了一种基于FL和多尺度U-Net的DEM插值模型。实验结果表明,与传统方法相比,该模型处理速度更快,但插值精度较低。同时,这一研究成果为高效安全地使用地形信息提供了一种新途径,特别是在那些对DEM数据隐私和安全有严格要求的应用场景中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a8d6/11437034/4140b0ac25da/41598_2024_72807_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验