Suppr超能文献

利用基于深度学习的分割技术,准确排除血氧水平依赖(BOLD)图像中受磁化率伪影影响的肾脏区域。

Accurate exclusion of kidney regions affected by susceptibility artifact in blood oxygenation level-dependent (BOLD) images using deep-learning-based segmentation.

机构信息

School of Biomedical Engineering, ShanghaiTech University, Room 416, BME Building, 393 Middle Huaxia Road, Pudong, Shanghai, China.

Central Research Institute, United Imaging Healthcare Group, Shanghai, China.

出版信息

Sci Rep. 2023 Nov 6;13(1):19191. doi: 10.1038/s41598-023-46760-2.

Abstract

Susceptibility artifact (SA) is common in renal blood oxygenation level-dependent (BOLD) images, and including the SA-affected region could induce much error in renal oxygenation quantification. In this paper, we propose to exclude kidney regions affected by SA in gradient echo images with different echo times (TE), based on a deep-learning segmentation approach. For kidney segmentation, a ResUNet was trained with 4000 CT images and then tuned with 60 BOLD images. Verified by a Monte Carlo simulation, the presence of SA leads to a bilinear pattern for the segmented area of kidney as function of TE, and the segmented kidney in the image of turning point's TE would exclude SA-affected regions. To evaluate the accuracy of excluding SA-affected regions, we compared the SA-free segmentations by the proposed method against manual segmentation by an experienced user for BOLD images of 35 subjects, and found DICE of 93.9% ± 3.4%. For 10 kidneys with severe SA, the DICE was 94.5% ± 1.7%, for 14 with moderate SA, 92.8% ± 4.7%, and for 46 with mild or no SA, 94.3% ± 3.8%. For the three sub-groups of kidneys, correction of SA led to a decrease of R* of 8.5 ± 2.8, 4.7 ± 1.8, and 1.6 ± 0.9 s, respectively. In conclusion, the proposed method is capable of segmenting kidneys in BOLD images and at the same time excluding SA-affected region in a fully automatic way, therefore can potentially improve both speed and accuracy of the quantification procedure of renal BOLD data.

摘要

易感性伪影(SA)在肾脏血氧水平依赖(BOLD)图像中很常见,包括受 SA 影响的区域在内,可能会导致肾脏氧合定量产生很大误差。在本文中,我们提出了一种基于深度学习分割方法,在具有不同回波时间(TE)的梯度回波图像中排除受 SA 影响的肾脏区域。对于肾脏分割,我们使用 4000 张 CT 图像训练了一个 ResUNet,然后使用 60 张 BOLD 图像进行调整。通过蒙特卡罗模拟验证,SA 的存在导致作为 TE 函数的肾脏分割区域呈双线性模式,而在转折点 TE 的图像中分割的肾脏将排除受 SA 影响的区域。为了评估排除受 SA 影响区域的准确性,我们将提出的方法与经验丰富的用户对 35 名受试者的 BOLD 图像进行手动分割的方法进行了比较,并发现无 SA 分割的 DICE 为 93.9%±3.4%。对于 10 个具有严重 SA 的肾脏,DICE 为 94.5%±1.7%,对于 14 个具有中度 SA 的肾脏,DICE 为 92.8%±4.7%,对于 46 个具有轻度或无 SA 的肾脏,DICE 为 94.3%±3.8%。对于这三组肾脏,SA 的校正分别导致 R*降低 8.5±2.8、4.7±1.8 和 1.6±0.9 s。总之,该方法能够自动分割 BOLD 图像中的肾脏,并同时排除受 SA 影响的区域,因此有可能提高肾脏 BOLD 数据定量处理的速度和准确性。

相似文献

4
Layered deep learning for automatic mandibular segmentation in cone-beam computed tomography.
J Dent. 2021 Nov;114:103786. doi: 10.1016/j.jdent.2021.103786. Epub 2021 Aug 20.
6
Automated quantification and evaluation of motion artifact on coronary CT angiography images.
Med Phys. 2018 Dec;45(12):5494-5508. doi: 10.1002/mp.13243. Epub 2018 Nov 13.
8
An unsupervised deep learning technique for susceptibility artifact correction in reversed phase-encoding EPI images.
Magn Reson Imaging. 2020 Sep;71:1-10. doi: 10.1016/j.mri.2020.04.004. Epub 2020 May 12.
9
Sinogram domain metal artifact correction of CT via deep learning.
Comput Biol Med. 2023 Mar;155:106710. doi: 10.1016/j.compbiomed.2023.106710. Epub 2023 Feb 20.

本文引用的文献

1
Automatic kidney segmentation using 2.5D ResUNet and 2.5D DenseUNet for malignant potential analysis in complex renal cyst based on CT images.
EURASIP J Image Video Process. 2022;2022(1):5. doi: 10.1186/s13640-022-00581-x. Epub 2022 Mar 22.
3
Consensus-based technical recommendations for clinical translation of renal BOLD MRI.
MAGMA. 2020 Feb;33(1):199-215. doi: 10.1007/s10334-019-00802-x. Epub 2019 Nov 25.
4
Google maps for tissues: Multiscale imaging of biological systems and disease.
Acta Physiol (Oxf). 2020 Feb;228(2):e13392. doi: 10.1111/apha.13392. Epub 2019 Oct 16.
5
Kidney cortex segmentation in 2D CT with U-Nets ensemble aggregation.
Diagn Interv Imaging. 2019 Apr;100(4):211-217. doi: 10.1016/j.diii.2019.03.001. Epub 2019 Mar 27.
6
Measurement of renal tissue oxygenation with blood oxygen level-dependent MRI and oxygen transit modeling.
Am J Physiol Renal Physiol. 2014 Mar 15;306(6):F579-87. doi: 10.1152/ajprenal.00575.2013. Epub 2014 Jan 22.
7
New magnetic resonance imaging methods in nephrology.
Kidney Int. 2014 Apr;85(4):768-78. doi: 10.1038/ki.2013.361. Epub 2013 Sep 25.
8
Human renovascular disease: estimating fractional tissue hypoxia to analyze blood oxygen level-dependent MR.
Radiology. 2013 Sep;268(3):770-8. doi: 10.1148/radiol.13122234. Epub 2013 Jun 20.
9
Renal blood oxygenation level-dependent imaging: contribution of R2 to R2* values.
Invest Radiol. 2013 Jul;48(7):501-8. doi: 10.1097/RLI.0b013e3182823591.
10
Assessment of kidney volumes from MRI: acquisition and segmentation techniques.
AJR Am J Roentgenol. 2012 Nov;199(5):1060-9. doi: 10.2214/AJR.12.8657.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验