Suppr超能文献

基于短轴电影磁共振径向长轴重建的深度学习全自动分割的右心室应变和容量分析。

Right ventricular strain and volume analyses through deep learning-based fully automatic segmentation based on radial long-axis reconstruction of short-axis cine magnetic resonance images.

机构信息

Department of Health Sciences, Faculty of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka-shi, Fukuoka, 812-8582, Japan.

Department of Health Sciences, School of Medical Sciences, Kyushu University, Fukuoka, Japan.

出版信息

MAGMA. 2022 Dec;35(6):911-921. doi: 10.1007/s10334-022-01017-3. Epub 2022 May 18.

Abstract

OBJECTIVE

We propose a deep learning-based fully automatic right ventricle (RV) segmentation technique that targets radially reconstructed long-axis (RLA) images of the center of the RV region in routine short axis (SA) cardiovascular magnetic resonance (CMR) images. Accordingly, the purpose of this study is to compare the accuracy of deep learning-based fully automatic segmentation of RLA images with the accuracy of conventional deep learning-based segmentation in SA orientation in terms of the measurements of RV strain parameters.

MATERIALS AND METHODS

We compared the accuracies of the above-mentioned methods in RV segmentations and in measuring RV strain parameters by Dice similarity coefficients (DSCs) and correlation coefficients.

RESULTS

DSC of RV segmentation of the RLA method exhibited a higher value than those of the conventional SA methods (0.84 vs. 0.61). Correlation coefficient with respect to manual RV strain measurements in the fully automatic RLA were superior to those in SA measurements (0.5-0.7 vs. 0.1-0.2).

DISCUSSION

Our proposed RLA realizes accurate fully automatic extraction of the entire RV region from an available CMR cine image without any additional imaging. Our findings overcome the complexity of image analysis in CMR without the limitations of the RV visualization in echocardiography.

摘要

目的

我们提出了一种基于深度学习的全自动右心室(RV)分割技术,该技术针对常规短轴(SA)心血管磁共振(CMR)图像中 RV 区域中心的放射状重建长轴(RLA)图像。因此,本研究的目的是比较基于深度学习的全自动 RLA 图像分割和基于传统深度学习的 SA 方向分割在 RV 应变参数测量方面的准确性。

材料和方法

我们通过 Dice 相似系数(DSC)和相关系数比较了上述方法在 RV 分割和测量 RV 应变参数方面的准确性。

结果

RLA 方法的 RV 分割 DSC 值高于传统 SA 方法(0.84 比 0.61)。全自动 RLA 与手动 RV 应变测量的相关系数优于 SA 测量(0.5-0.7 比 0.1-0.2)。

讨论

我们提出的 RLA 方法能够从现有的 CMR 电影图像中准确地全自动提取整个 RV 区域,而无需任何额外的成像。我们的研究结果克服了 CMR 图像分析的复杂性,而没有超声心动图中 RV 可视化的局限性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验