Suppr超能文献

一种用于反转相位编码EPI图像中敏感性伪影校正的无监督深度学习技术。

An unsupervised deep learning technique for susceptibility artifact correction in reversed phase-encoding EPI images.

作者信息

Duong Soan T M, Phung Son L, Bouzerdoum Abdesselam, Schira Mark M

机构信息

School of Electrical, Computer and Telecommunications Engineering, University of Wollongong, Australia.

School of Electrical, Computer and Telecommunications Engineering, University of Wollongong, Australia.

出版信息

Magn Reson Imaging. 2020 Sep;71:1-10. doi: 10.1016/j.mri.2020.04.004. Epub 2020 May 12.

Abstract

Echo planar imaging (EPI) is a fast and non-invasive magnetic resonance imaging technique that supports data acquisition at high spatial and temporal resolutions. However, susceptibility artifacts, which cause the misalignment to the underlying structural image, are unavoidable distortions in EPI. Traditional susceptibility artifact correction (SAC) methods estimate the displacement field by optimizing an objective function that involves one or more pairs of reversed phase-encoding (PE) images. The estimated displacement field is then used to unwarp the distorted images and produce the corrected images. Since this conventional approach is time-consuming, we propose an end-to-end deep learning technique, named S-Net, to correct the susceptibility artifacts the reversed-PE image pair. The proposed S-Net consists of two components: (i) a convolutional neural network to map a reversed-PE image pair to the displacement field; and (ii) a spatial transform unit to unwarp the input images and produce the corrected images. The S-Net is trained using a set of reversed-PE image pairs and an unsupervised loss function, without ground-truth data. For a new image pair of reversed-PE images, the displacement field and corrected images are obtained simultaneously by evaluating the trained S-Net directly. Evaluations on three different datasets demonstrate that S-Net can correct the susceptibility artifacts in the reversed-PE images. Compared with two state-of-the-art SAC methods (TOPUP and TISAC), the proposed S-Net runs significantly faster: 20 times faster than TISAC and 369 times faster than TOPUP, while achieving a similar correction accuracy. Consequently, S-Net accelerates the medical image processing pipelines and makes the real-time correction for MRI scanners feasible. Our proposed technique also opens up a new direction in learning-based SAC.

摘要

回波平面成像(EPI)是一种快速且非侵入性的磁共振成像技术,可支持在高空间和时间分辨率下进行数据采集。然而,在EPI中,易感性伪影是不可避免的失真,它会导致与基础结构图像的错位。传统的易感性伪影校正(SAC)方法通过优化一个涉及一对或多对反向相位编码(PE)图像的目标函数来估计位移场。然后,使用估计的位移场对失真图像进行去扭曲,以生成校正后的图像。由于这种传统方法耗时,我们提出了一种名为S-Net的端到端深度学习技术,用于校正反向PE图像对中的易感性伪影。所提出的S-Net由两个组件组成:(i)一个卷积神经网络,用于将反向PE图像对映射到位移场;(ii)一个空间变换单元,用于对输入图像进行去扭曲并生成校正后的图像。S-Net使用一组反向PE图像对和一个无监督损失函数进行训练,无需真实数据。对于一对新的反向PE图像,通过直接评估训练好的S-Net可以同时获得位移场和校正后的图像。在三个不同数据集上的评估表明,S-Net可以校正反向PE图像中的易感性伪影。与两种最先进的SAC方法(TOPUP和TISAC)相比,所提出的S-Net运行速度明显更快:比TISAC快20倍,比TOPUP快369倍,同时实现了相似的校正精度。因此,S-Net加速了医学图像处理流程,并使MRI扫描仪的实时校正成为可能。我们提出的技术还为基于学习的SAC开辟了一个新方向。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验