Suppr超能文献

互穿聚合物网络HA/Alg-RGD水凝胶:三维细胞生长和血管生成的宏观稳定性与微观适应性的平衡

Interpenetrating Polymer Network HA/Alg-RGD Hydrogel: An Equilibrium of Macroscopic Stability and Microscopic Adaptability for 3D Cell Growth and Vascularization.

作者信息

Liu Yuanshan, Liu Xingzhu, Zhang Yajie, Cao Yi, Luo Bingqing, Wang Zheng, Pei Renjun

机构信息

School of Nano-Tech and Nano-Bionics, University of Science and Technology of China, Hefei, 230026, China.

CAS Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, China.

出版信息

Biomacromolecules. 2023 Dec 11;24(12):5977-5988. doi: 10.1021/acs.biomac.3c01022. Epub 2023 Nov 8.

Abstract

Two-dimensional (2D) cell culture methods dominate the current research. However, the inherent responsiveness of cells to their native three-dimensional (3D) microenvironment necessitates a paradigm shift toward the development of advanced hydrogels that faithfully mimic the intricacies of the extracellular matrix (ECM) and enable continuous cell-ECM interactions. To address the constraints of traditional static hydrogel networks that impede effective cell-matrix and cell-cell interactions, and to tackle the inherent stability issues associated with dynamically cross-linked hydrogels, which have become a pressing concern. Herein, we present an interpenetrating polymer network (IPN) hydrogel (HA/Alg-RGD hydrogel) that combines a physically cross-linked network between alginate and calcium ions (Alg-Ca) for the enhanced cell growth adaptability with a chemically cross-linked hyaluronic acid (HA) network to ensure macroscopic stability during cell culture. The incorporation of arginine-glycine-aspartic peptide modified alginate (Alg-RGD) further facilitates cell adhesion and improves the cell-hydrogel interaction. Notably, this IPN hydrogel demonstrates mechanical stability and enables cell spreading and growth within its structural framework. Leveraging the reversible characteristics of the ionically cross-linked Alg-Ca network within IPN hydrogels, we demonstrate the feasibility of the gelatin sacrificial solution for 3D printing purposes within the hydrogel matrix. Subsequent UV-induced covalent cross-linking enables the fabrication of vascularized microfluidic channels within the resulting construct. Our results demonstrate endothelial cell spreading and spontaneous cell sprouting within the hydrogel matrix, thus highlighting the efficacy of this IPN hydrogel system in facilitating 3D cell growth. Additionally, our study emphasizes the potential of 3D printed constructs as a promising approach for vascularization in tissue engineering. The importance of RGD peptides in promoting favorable cell-hydrogel scaffold interactions is also highlighted, emphasizing their critical role in optimizing biomaterial-cell interfaces.

摘要

二维(2D)细胞培养方法主导着当前的研究。然而,细胞对其天然三维(3D)微环境的固有反应性使得研究范式需要向开发先进水凝胶转变,这种水凝胶要能忠实地模拟细胞外基质(ECM)的复杂性,并实现细胞与ECM的持续相互作用。为了解决阻碍有效细胞-基质和细胞-细胞相互作用的传统静态水凝胶网络的局限性,并应对与动态交联水凝胶相关的固有稳定性问题,这已成为一个紧迫的问题。在此,我们提出一种互穿聚合物网络(IPN)水凝胶(HA/Alg-RGD水凝胶),它结合了藻酸盐和钙离子之间的物理交联网络(Alg-Ca)以增强细胞生长适应性,以及化学交联的透明质酸(HA)网络以确保细胞培养过程中的宏观稳定性。精氨酸-甘氨酸-天冬氨酸肽修饰的藻酸盐(Alg-RGD)的加入进一步促进了细胞黏附并改善了细胞-水凝胶相互作用。值得注意的是,这种IPN水凝胶具有机械稳定性,并能使细胞在其结构框架内铺展和生长。利用IPN水凝胶中离子交联的Alg-Ca网络的可逆特性,我们证明了明胶牺牲溶液在水凝胶基质内用于3D打印目的的可行性。随后的紫外线诱导共价交联能够在所得构建体中制造血管化微流体通道。我们的结果表明内皮细胞在水凝胶基质内铺展并自发形成细胞芽,从而突出了这种IPN水凝胶系统在促进3D细胞生长方面的功效。此外,我们的研究强调了3D打印构建体作为组织工程中血管化的一种有前途方法的潜力。还强调了RGD肽在促进良好的细胞-水凝胶支架相互作用中的重要性,突出了它们在优化生物材料-细胞界面中的关键作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验