Suppr超能文献

利用液相聚丙烯酰胺 3D 打印技术来调控海藻酸盐-明胶水凝胶的性能以引导细胞的生长和行为。

The use of fluid-phase 3D printing to pattern alginate-gelatin hydrogel properties to guide cell growth and behaviour.

机构信息

School of Biomolecular and Biomedical Science, University College Dublin, Belfield Dublin 4, Ireland.

School of Physics, University College Dublin, Belfield Dublin 4, Ireland.

出版信息

Biomed Mater. 2024 Jun 10;19(4). doi: 10.1088/1748-605X/ad51bf.

Abstract

Three-dimensional (3D) (bio)printing technology has boosted the advancement of the biomedical field. However, tissue engineering is an evolving field and (bio)printing biomimetic constructions for tissue formation is still a challenge. As a new methodology to facilitate the construction of more complex structures, we suggest the use of the fluid-phase 3D printing to pattern the scaffold's properties. The methodology consists of an exchangeable fluid-phase printing medium in which the constructions are fabricated and patterned during the printing process. Using the fluid-phase methodology, the biological and mechanical properties can be tailored promoting cell behaviour guidance and compartmentalization. In this study, we first assessed different formulations of alginate/gelatin to create a stable substrate capable to promote massive cell colonizationover time. Overall, formulations with lower gelatin content and 2-(N-morpholino)ethanesulfonic acid (MES) buffer as a solvent showed better stability under cell culture conditions and enhanced U2OS cell growth. Next, the fluid-phase showed better printing fidelity and resolution in comparison to air printing as it diminished the collapsing and the spread of the hydrogel strand. In sequence, the fluid-phase methodology was used to create functionalized alginate-gelatin-arginylglycylaspartic acid peptide (RGD) hydrogels via carbodiimides chemistry. The alginate-gelatin-RGD hydrogels showed an increase of 2.97-fold in cell growth and more spread substrate colonization in comparison to alginate-gelatin hydrogel. Moreover, the fluid-phase methodology was used to add RGD molecules to pre-determined parts of the alginate-gelatin substrate during the printing process promoting U2OS cell compartmentalization. In addition, different substrate stiffnesses were also created via fluid-phase by crosslinking the hydrogel with different concentrations of CaClduring the printing process. As a result, the U2OS cells were also compartmentalized on the stiffer parts of the printings. Finally, our results showed that by combining stiffer hydrogel with RGD increasing concentrations we can create a synergetic effect and boost cell metabolism by up to 3.17-fold. This work presents an idea of a new printing process for tailoring multiple parameters in hydrogel substrates by using fluid-phase to generate more faithful replication of theenvironment.

摘要

三维(3D)(生物)打印技术推动了生物医学领域的发展。然而,组织工程是一个不断发展的领域,为组织形成而打印仿生结构仍然是一个挑战。作为一种促进更复杂结构构建的新方法,我们建议使用流体相 3D 打印来对支架的性能进行图案化。该方法包括可交换的流体相打印介质,其中在打印过程中构建和图案化构造。使用流体相方法,可以定制生物和机械性能,从而促进细胞行为指导和分隔。在这项研究中,我们首先评估了不同配方的海藻酸盐/明胶,以创建一种能够随时间促进大量细胞定植的稳定基质。总体而言,含有较低明胶含量和 2-(N-吗啉基)乙磺酸(MES)缓冲液作为溶剂的配方在细胞培养条件下表现出更好的稳定性,并增强了 U2OS 细胞的生长。接下来,与空气打印相比,流体相显示出更好的打印保真度和分辨率,因为它减少了水凝胶链的坍塌和扩散。随后,通过碳二亚胺化学,使用流体相方法在海藻酸盐-明胶-精氨酸-甘氨酸-天冬氨酸肽(RGD)水凝胶上创建功能化水凝胶。与海藻酸盐-明胶水凝胶相比,海藻酸盐-明胶-RGD 水凝胶的细胞生长增加了 2.97 倍,并且基质的细胞定植更加广泛。此外,通过在打印过程中使用流体相将 RGD 分子添加到海藻酸盐-明胶基质的预定部分,使用流体相方法促进了 U2OS 细胞的分隔。此外,还通过在打印过程中用不同浓度的 CaCl2 交联水凝胶来创建不同的基质硬度。结果,U2OS 细胞也在打印件的较硬部分进行了分隔。最后,我们的结果表明,通过将刚性更高的水凝胶与增加浓度的 RGD 结合,我们可以产生协同作用,将细胞代谢提高多达 3.17 倍。这项工作提出了一种新的打印工艺的想法,通过使用流体相在水凝胶基质中产生更多真实的环境复制,从而可以定制多个参数。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验