Liu Yuwei, Wang Jiuao, Yue Hao, Du Zongliang, Cheng Xu, Wang Haibo, Cheng Fei, Du Xiaosheng
College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China.
College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; The Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China.
Carbohydr Polym. 2024 Jan 1;323:121465. doi: 10.1016/j.carbpol.2023.121465. Epub 2023 Oct 6.
Thermoplastic starch (TPS), a green and fully biodegradable composite, is considered the most viable option for replacing petroleum-based polymers. However, the poor mechanical properties, high flammability and moisture absorption susceptibility of TPS severely restrict its large-scale applications. Through PA phosphorylation and blending with halloysite nanotubes (HNTs), phytic acid (PA)-phosphorylated HNT/TPS composite films (HNTPSFs) were fabricated with enhanced mechanical strength, excellent flame retardancy, and improved barrier properties. The introduction of HNTs substantially increased the mechanical properties (tensile strength increased 54.3 % and elongation at break decreased 37.0 %) of TPS films and reduced the diffusion of water vapor (decreased 34.1 %). Thermogravimetric analysis studies demonstrated that the HNTPSFs had exceptional thermal stability at their anticipated working temperatures. Furthermore, when the PA content in the composite films increased, the peak heat release rate, total heat release and fire growth index of the HNTPSFs all decreased substantially, demonstrating the improved flame retardancy of HNTPSFs. Hence, the synthesized fully biodegradable TPS composites show enormous potential in the field of renewable biopolymers.
热塑性淀粉(TPS)是一种绿色且完全可生物降解的复合材料,被认为是替代石油基聚合物的最可行选择。然而,TPS较差的机械性能、高易燃性和吸湿敏感性严重限制了其大规模应用。通过植酸(PA)磷酸化并与埃洛石纳米管(HNTs)共混,制备了具有增强机械强度、优异阻燃性和改善阻隔性能的植酸(PA)磷酸化HNT/TPS复合薄膜(HNTPSFs)。HNTs的引入显著提高了TPS薄膜的机械性能(拉伸强度提高了54.3%,断裂伸长率降低了37.0%),并减少了水蒸气的扩散(降低了34.1%)。热重分析研究表明,HNTPSFs在其预期工作温度下具有出色的热稳定性。此外,当复合薄膜中的PA含量增加时,HNTPSFs的峰值热释放速率、总热释放量和火灾增长指数均大幅下降,表明HNTPSFs的阻燃性得到了改善。因此,合成的完全可生物降解的TPS复合材料在可再生生物聚合物领域显示出巨大潜力。