文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

从“海稻 86”中分离得到的 Jacalin 相关凝集素 45(OsJRL45)增强了水稻在幼苗期和生殖期的耐盐性。

Jacalin-related lectin 45 (OsJRL45) isolated from 'sea rice 86' enhances rice salt tolerance at the seedling and reproductive stages.

机构信息

Hunan Province Key Laboratory of Crop Sterile Germplasm Resource Innovation and Application, College of Life Science, Hunan Normal University, Changsha, 410081, China.

College of Chemistry and Chemical Engineering, Jishou University, Hunan, 416000, China.

出版信息

BMC Plant Biol. 2023 Nov 9;23(1):553. doi: 10.1186/s12870-023-04533-z.


DOI:10.1186/s12870-023-04533-z
PMID:37940897
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10634080/
Abstract

BACKGROUND: Rice (Oryza sativa L.) is one of the most widely cultivated grain crops in the world that meets the caloric needs of more than half the world's population. Salt stress seriously affects rice production and threatens food security. Therefore, mining salt tolerance genes in salt-tolerant germplasm and elucidating their molecular mechanisms in rice are necessary for the breeding of salt tolerant cultivars. RESULTS: In this study, a salt stress-responsive jacalin-related lectin (JRL) family gene, OsJRL45, was identified in the salt-tolerant rice variety 'sea rice 86' (SR86). OsJRL45 showed high expression level in leaves, and the corresponding protein mainly localized to the endoplasmic reticulum. The knockout mutant and overexpression lines of OsJRL45 revealed that OsJRL45 positively regulates the salt tolerance of rice plants at all growth stages. Compared with the wild type (WT), the OsJRL45 overexpression lines showed greater salt tolerance at the reproductive stage, and significantly higher seed setting rate and 1,000-grain weight. Moreover, OsJRL45 expression significantly improved the salt-resistant ability and yield of a salt-sensitive indica cultivar, L6-23. Furthermore, OsJRL45 enhanced the antioxidant capacity of rice plants and facilitated the maintenance of Na-K homeostasis under salt stress conditions. Five proteins associated with OsJRL45 were screened by transcriptome and interaction network analysis, of which one, the transmembrane transporter Os10g0210500 affects the salt tolerance of rice by regulating ion transport-, salt stress-, and hormone-responsive proteins. CONCLUSIONS: The OsJRL45 gene isolated from SR86 positively regulated the salt tolerance of rice plants at all growth stages, and significantly increased the yield of salt-sensitive rice cultivar under NaCl treatment. OsJRL45 increased the activity of antioxidant enzyme of rice and regulated Na/K dynamic equilibrium under salinity conditions. Our data suggest that OsJRL45 may improve the salt tolerance of rice by mediating the expression of ion transport-, salt stress response-, and hormone response-related genes.

摘要

背景:水稻(Oryza sativa L.)是世界上种植最广泛的粮食作物之一,满足了全球一半以上人口的热量需求。盐胁迫严重影响水稻生产,威胁粮食安全。因此,挖掘耐盐种质资源中的耐盐基因并阐明其在水稻中的分子机制,对于培育耐盐品种是必要的。

结果:本研究在耐盐水稻品种‘海稻 86’(SR86)中鉴定到一个盐胁迫响应的豆科凝集素(JRL)家族基因 OsJRL45。OsJRL45 在叶片中表达水平较高,相应的蛋白主要定位于内质网。OsJRL45 的敲除突变体和过表达系表明,OsJRL45 正向调控水稻植株在所有生长阶段的耐盐性。与野生型(WT)相比,OsJRL45 过表达系在生殖期表现出更强的耐盐性,结实率和千粒重显著提高。此外,OsJRL45 表达显著提高了敏感籼稻品种 L6-23 的耐盐能力和产量。此外,OsJRL45 增强了水稻植株的抗氧化能力,并在盐胁迫条件下有助于维持 Na-K 平衡。通过转录组和互作网络分析筛选到与 OsJRL45 相关的 5 个蛋白,其中一个跨膜转运蛋白 Os10g0210500 通过调节离子转运、盐胁迫和激素响应蛋白影响水稻的耐盐性。

结论:从 SR86 中分离的 OsJRL45 基因正向调控水稻植株在所有生长阶段的耐盐性,在 NaCl 处理下显著提高了敏感水稻品种的产量。OsJRL45 在盐胁迫条件下增加了水稻抗氧化酶的活性,并调节了 Na/K 动态平衡。我们的数据表明,OsJRL45 可能通过调节离子转运、盐胁迫响应和激素响应相关基因的表达来提高水稻的耐盐性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2127/10634080/8b562cbb2404/12870_2023_4533_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2127/10634080/eda9370dac37/12870_2023_4533_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2127/10634080/54e73da4226f/12870_2023_4533_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2127/10634080/c4a8de919b6c/12870_2023_4533_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2127/10634080/d3d87f62a8cf/12870_2023_4533_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2127/10634080/4048bc351c54/12870_2023_4533_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2127/10634080/ec62bc5bbb80/12870_2023_4533_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2127/10634080/787cf3eb5482/12870_2023_4533_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2127/10634080/9c1328c9926c/12870_2023_4533_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2127/10634080/796e6c548d54/12870_2023_4533_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2127/10634080/4e4ead4c6dce/12870_2023_4533_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2127/10634080/98311ee1303f/12870_2023_4533_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2127/10634080/dc3b7340cf55/12870_2023_4533_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2127/10634080/95a4bfd22fb3/12870_2023_4533_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2127/10634080/aa581f2e4e99/12870_2023_4533_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2127/10634080/8b562cbb2404/12870_2023_4533_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2127/10634080/eda9370dac37/12870_2023_4533_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2127/10634080/54e73da4226f/12870_2023_4533_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2127/10634080/c4a8de919b6c/12870_2023_4533_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2127/10634080/d3d87f62a8cf/12870_2023_4533_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2127/10634080/4048bc351c54/12870_2023_4533_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2127/10634080/ec62bc5bbb80/12870_2023_4533_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2127/10634080/787cf3eb5482/12870_2023_4533_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2127/10634080/9c1328c9926c/12870_2023_4533_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2127/10634080/796e6c548d54/12870_2023_4533_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2127/10634080/4e4ead4c6dce/12870_2023_4533_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2127/10634080/98311ee1303f/12870_2023_4533_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2127/10634080/dc3b7340cf55/12870_2023_4533_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2127/10634080/95a4bfd22fb3/12870_2023_4533_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2127/10634080/aa581f2e4e99/12870_2023_4533_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2127/10634080/8b562cbb2404/12870_2023_4533_Fig15_HTML.jpg

相似文献

[1]
Jacalin-related lectin 45 (OsJRL45) isolated from 'sea rice 86' enhances rice salt tolerance at the seedling and reproductive stages.

BMC Plant Biol. 2023-11-9

[2]
, a Jacalin-Related Lectin Gene, Promotes Salt Stress Tolerance in Rice.

Int J Mol Sci. 2023-4-18

[3]
Identification of Salt Tolerance Related Candidate Genes in 'Sea Rice 86' at the Seedling and Reproductive Stages Using QTL-Seq and BSA-Seq.

Genes (Basel). 2023-2-10

[4]
A NAC Transcription Factor from 'Sea Rice 86' Enhances Salt Tolerance by Promoting Hydrogen Sulfide Production in Rice Seedlings.

Int J Mol Sci. 2022-6-9

[5]
Comparison of the genetic basis of salt tolerance at germination, seedling, and reproductive stages in an introgression line population of rice.

Mol Biol Rep. 2024-2-1

[6]
Na/K Balance and Transport Regulatory Mechanisms in Weedy and Cultivated Rice (Oryza sativa L.) Under Salt Stress.

BMC Plant Biol. 2018-12-29

[7]
Morphological and metabolic responses to salt stress of rice (Oryza sativa L.) cultivars which differ in salinity tolerance.

Plant Physiol Biochem. 2019-10-17

[8]
Joint QTL Mapping and Transcriptome Sequencing Analysis Reveal Candidate Genes for Salinity Tolerance in L. ssp. Japonica Seedlings.

Int J Mol Sci. 2023-12-18

[9]
Genetics of yield component traits under salt stress at flowering stage and selection of salt tolerant pre-breeding lines for rice improvement.

Genetica. 2022-10

[10]
Differential responses of antioxidative defense system to prolonged salinity stress in salt-tolerant and salt-sensitive Indica rice (Oryza sativa L.) seedlings.

Protoplasma. 2011-12-24

引用本文的文献

[1]
Genome-wide characterization and expression analysis of the JRL gene family in response to hormones and abiotic stress in tomato ( L.).

PeerJ. 2025-7-21

[2]
Comparative analysis of the gene family in the whole-genome of five gramineous plants.

Front Plant Sci. 2024-12-24

[3]
Marker-Assisted Selection of Jacalin-Related Lectin Genes and Derived from Sea Rice 86 Enhances Salt Tolerance in Rice.

Int J Mol Sci. 2024-10-10

[4]
Screening of Rice ( L.) Genotypes for Salinity Tolerance and Dissecting Determinants of Tolerance Mechanism.

Plants (Basel). 2024-4-6

本文引用的文献

[1]
Identification of Salt Tolerance Related Candidate Genes in 'Sea Rice 86' at the Seedling and Reproductive Stages Using QTL-Seq and BSA-Seq.

Genes (Basel). 2023-2-10

[2]
KEGG for taxonomy-based analysis of pathways and genomes.

Nucleic Acids Res. 2023-1-6

[3]
OPAQUE3, encoding a transmembrane bZIP transcription factor, regulates endosperm storage protein and starch biosynthesis in rice.

Plant Commun. 2022-11-14

[4]
Molecular tools, potential frontiers for enhancing salinity tolerance in rice: A critical review and future prospective.

Front Plant Sci. 2022-7-28

[5]
Jasmonic acid pretreatment improves salt tolerance of wheat by regulating hormones biosynthesis and antioxidant capacity.

Front Plant Sci. 2022-7-22

[6]
A NAC Transcription Factor from 'Sea Rice 86' Enhances Salt Tolerance by Promoting Hydrogen Sulfide Production in Rice Seedlings.

Int J Mol Sci. 2022-6-9

[7]
Study on the Effect of Salt Stress on Yield and Grain Quality Among Different Rice Varieties.

Front Plant Sci. 2022-5-31

[8]
Quantitative Trait Locus Mapping of Salt Tolerance in Wild Rice .

Int J Mol Sci. 2022-2-21

[9]
Rice Na-Permeable Transporter OsHAK12 Mediates Shoots Na Exclusion in Response to Salt Stress.

Front Plant Sci. 2021-12-7

[10]
Uncovering the Novel QTLs and Candidate Genes of Salt Tolerance in Rice with Linkage Mapping, RTM-GWAS, and RNA-seq.

Rice (N Y). 2021-11-14

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索