Suppr超能文献

使用高密度环形纳米间隙阵列通过表面增强拉曼光谱法检测环境中的纳米塑料。

Detection of environmental nanoplastics via surface-enhanced Raman spectroscopy using high-density, ring-shaped nanogap arrays.

作者信息

Luo Sihai, Zhang Junjie, de Mello John C

机构信息

Department of Chemistry, Norwegian University of Science and Technology (NTNU), Trondheim, Norway.

出版信息

Front Bioeng Biotechnol. 2023 Oct 24;11:1242797. doi: 10.3389/fbioe.2023.1242797. eCollection 2023.

Abstract

Micro- and nano-plastics (MNPs) are global contaminants of growing concern to the ecosystem and human health. In-the-field detection and identification of environmental micro- and nano-plastics (e-MNPs) is critical for monitoring the spread and effects of e-MNPs but is challenging due to the dearth of suitable analytical techniques, especially in the sub-micron size range. Here we show that thin gold films patterned with a dense, hexagonal array of ring-shaped nanogaps (RSNs) can be used as active substrates for the sensitive detection of micro- and nano-plastics by surface-enhanced Raman spectroscopy (SERS), requiring only small sample volumes and no significant sample preparation. By drop-casting 0.2-μL aqueous test samples onto the SERS substrates, 50-nm polystyrene (PS) nanoparticles could be determined via Raman spectroscopy at concentrations down to 1 μg/mL. The substrates were successfully applied to the detection and identification of ∼100-nm polypropylene e-MNPs in filtered drinking water and ∼100-nm polyethylene terephthalate (PET) e-MNPs in filtered wash-water from a freshly cleaned PET-based infant feeding bottle.

摘要

微塑料和纳米塑料(MNPs)是日益引起生态系统和人类健康关注的全球污染物。对环境微塑料和纳米塑料(e-MNPs)进行现场检测和识别对于监测e-MNPs的扩散和影响至关重要,但由于缺乏合适的分析技术,尤其是在亚微米尺寸范围内,这一过程具有挑战性。在此,我们展示了一种由密集的六边形环形纳米间隙(RSNs)阵列图案化的薄金膜,可作为活性基底,通过表面增强拉曼光谱(SERS)对微塑料和纳米塑料进行灵敏检测,仅需少量样品体积且无需大量样品制备。通过将0.2 μL水性测试样品滴铸到SERS基底上,可通过拉曼光谱在低至1 μg/mL的浓度下测定50 nm的聚苯乙烯(PS)纳米颗粒。这些基底已成功应用于检测和识别过滤饮用水中约100 nm的聚丙烯e-MNPs以及来自新清洗的PET材质婴儿奶瓶的过滤洗涤水中约100 nm的聚对苯二甲酸乙二酯(PET)e-MNPs。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33b4/10628472/a1a315c5d758/fbioe-11-1242797-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验