文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

光热敏感金纳米笼增强免疫“冷”肿瘤中免疫检查点阻断的抗肿瘤效率。

Photothermally sensitive gold nanocage augments the antitumor efficiency of immune checkpoint blockade in immune "cold" tumors.

机构信息

State Key Laboratory of Biotherapy, West China Hospital, Institute for Breast Health Medicine, Sichuan University, Chengdu, Sichuan, China.

Department of Medical Oncology, Cancer Center, Lung Cancer Center, West China Hospital of Sichuan University, Chengdu, Sichuan, China.

出版信息

Front Immunol. 2023 Oct 24;14:1279221. doi: 10.3389/fimmu.2023.1279221. eCollection 2023.


DOI:10.3389/fimmu.2023.1279221
PMID:37942337
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10628457/
Abstract

INTRODUCTION: Immune checkpoint blockade (ICB) has revolutionized the therapy landscape of malignancy melanoma. However, the clinical benefits from this regimen remain limited, especially in tumors lacking infiltrated T cells (known as "cold" tumors). Nanoparticle-mediated photothermal therapy (PTT) has demonstrated improved outcomes in the ablation of solid tumors by inducing immunogenic cell death (ICD) and reshaping the tumor immune microenvironment. Therefore, the combination of PTT and ICB is a promising regimen for patients with "cold" tumors. METHODS: A second near-infrared (NIR-II) light-activated gold nanocomposite AuNC@SiO@HA with AuNC as a kernel, silica as shell, and hyaluronic acid (HA) polymer as a targeting molecule, was synthesized for PTT. The fabricated AuNC@SiO@HA nanocomposites underwent various studies to characterize their physicochemical properties, light absorption spectra, photothermal conversion ability, cellular uptake ability, and bioactivities. The synergistic effect of AuNC@SiO@HA-mediated PTT and anti-PD-1 immunotherapy was evaluated using a mouse model of immune "cold" melanoma. The tumor-infiltrating T cells were assessed by immunofluorescence staining and flow cytometry. Furthermore, the mechanism of AuNC@SiO@HA-induced T-cell infiltration was investigated through immunochemistry staining of the ICD-related markers, including HSP70, CRT, and HMGB1. Finally, the safety of AuNC@SiO@HA nanocomposites was evaluated . RESULTS: The AuNC@SiO@HA nanocomposite with absorption covering 1064 nm was successfully synthesized. The nano-system can be effectively delivered into tumor cells, transform the optical energy into thermal energy upon laser irradiation, and induce tumor cell apoptosis . In an mouse melanoma model, AuNC@SiO@HA nanocomposites significantly induced ICD and T-cell infiltration. The combination of AuNC@SiO@HA and anti-PD-1 antibody synergistically inhibited tumor growth stimulating robust T lymphocyte immune responses. DISCUSSION: The combination of AuNC@SiO@HA-mediated PTT and anti-PD-1 immunotherapy proposed a neoteric strategy for oncotherapy, which efficiently convert the immune "cold" tumors into "hot" ones.

摘要

简介:免疫检查点阻断(ICB)彻底改变了恶性黑色素瘤的治疗格局。然而,这种疗法的临床获益仍然有限,特别是在缺乏浸润 T 细胞的肿瘤中(称为“冷”肿瘤)。纳米颗粒介导的光热疗法(PTT)通过诱导免疫原性细胞死亡(ICD)和重塑肿瘤免疫微环境,已证明在消融实体瘤方面具有更好的效果。因此,PTT 与 ICB 的联合治疗方案有望应用于“冷”肿瘤患者。

方法:我们合成了一种新型的近红外二区(NIR-II)光激活金纳米复合物 AuNC@SiO@HA,其内核为 AuNC,外壳为二氧化硅(SiO),靶向分子为透明质酸(HA)聚合物,用于 PTT。制备的 AuNC@SiO@HA 纳米复合材料经过多种研究,以表征其物理化学性质、光吸收光谱、光热转换能力、细胞摄取能力和生物活性。通过免疫“冷”黑色素瘤小鼠模型评估了 AuNC@SiO@HA 介导的 PTT 和抗 PD-1 免疫治疗的协同效应。通过免疫荧光染色和流式细胞术评估肿瘤浸润 T 细胞。此外,通过免疫化学染色检测 ICD 相关标志物,包括 HSP70、CRT 和 HMGB1,研究了 AuNC@SiO@HA 诱导 T 细胞浸润的机制。最后,评估了 AuNC@SiO@HA 纳米复合材料的安全性。

结果:成功合成了吸收覆盖 1064nm 的 AuNC@SiO@HA 纳米复合材料。该纳米系统可以有效地递送到肿瘤细胞中,在激光照射下将光学能量转化为热能,并诱导肿瘤细胞凋亡。在小鼠黑色素瘤模型中,AuNC@SiO@HA 纳米复合材料显著诱导 ICD 和 T 细胞浸润。AuNC@SiO@HA 与抗 PD-1 抗体联合使用可协同抑制肿瘤生长,刺激强烈的 T 淋巴细胞免疫反应。

讨论:AuNC@SiO@HA 介导的 PTT 与抗 PD-1 免疫治疗的联合为肿瘤治疗提出了一种新策略,可有效将免疫“冷”肿瘤转化为“热”肿瘤。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7061/10628457/b102fc420bfb/fimmu-14-1279221-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7061/10628457/292791958f1a/fimmu-14-1279221-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7061/10628457/46386845b997/fimmu-14-1279221-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7061/10628457/6b7aeff878b0/fimmu-14-1279221-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7061/10628457/58810cd4ee30/fimmu-14-1279221-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7061/10628457/b4f8a02a46ea/fimmu-14-1279221-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7061/10628457/b102fc420bfb/fimmu-14-1279221-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7061/10628457/292791958f1a/fimmu-14-1279221-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7061/10628457/46386845b997/fimmu-14-1279221-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7061/10628457/6b7aeff878b0/fimmu-14-1279221-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7061/10628457/58810cd4ee30/fimmu-14-1279221-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7061/10628457/b4f8a02a46ea/fimmu-14-1279221-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7061/10628457/b102fc420bfb/fimmu-14-1279221-g006.jpg

相似文献

[1]
Photothermally sensitive gold nanocage augments the antitumor efficiency of immune checkpoint blockade in immune "cold" tumors.

Front Immunol. 2023

[2]
Polydopamine-based nanoplatform for photothermal ablation with long-term immune activation against melanoma and its recurrence.

Acta Biomater. 2021-12

[3]
Combination of MAPK inhibition with photothermal therapy synergistically augments the anti-tumor efficacy of immune checkpoint blockade.

J Control Release. 2021-4-10

[4]
Multifunctional nanoparticles precisely reprogram the tumor microenvironment and potentiate antitumor immunotherapy after near-infrared-II light-mediated photothermal therapy.

Acta Biomater. 2023-9-1

[5]
ZnO-based multifunctional nanocomposites to inhibit progression and metastasis of melanoma by eliciting antitumor immunity via immunogenic cell death.

Theranostics. 2020

[6]
Metal-organic framework-mediated multifunctional nanoparticles for combined chemo-photothermal therapy and enhanced immunotherapy against colorectal cancer.

Acta Biomater. 2022-5

[7]
Functionalized biomimetic nanoparticles combining programmed death-1/programmed death-ligand 1 blockade with photothermal ablation for enhanced colorectal cancer immunotherapy.

Acta Biomater. 2023-2

[8]
Gold Nano Frameworks with Mesopores for Synergistic Immune-Thermal Therapy in Hepatic Carcinoma: A Paradigm Shift in Immune Checkpoint Blockade.

ACS Appl Mater Interfaces. 2024-9-4

[9]
Black SnO based nanotheranostic for imaging-guided photodynamic/photothermal synergistic therapy in the second near-infrared window.

Acta Biomater. 2021-7-15

[10]
Aptamer-Conjugated Au Nanocage/SiO Core-Shell Bifunctional Nanoprobes with High Stability and Biocompatibility for Cellular SERS Imaging and Near-Infrared Photothermal Therapy.

ACS Sens. 2019-1-18

引用本文的文献

[1]
Eliciting antitumor immunity via therapeutic cancer vaccines.

Cell Mol Immunol. 2025-7-9

[2]
NIR-Triggered siRNA Release and Lysosomal Escape for Synergistic Photothermal Tumor Therapy.

Int J Nanomedicine. 2025-4-16

[3]
Advances in nanotechnology for targeting cancer-associated fibroblasts: A review of multi-strategy drug delivery and preclinical insights.

APL Bioeng. 2025-3-13

[4]
PBMC-engrafted humanized mice models for evaluating immune-related and anticancer drug delivery systems.

Front Mol Biosci. 2024-8-20

[5]
Noble Metal Nanoparticle-Based Photothermal Therapy: Development and Application in Effective Cancer Therapy.

Int J Mol Sci. 2024-5-22

本文引用的文献

[1]
Protocol for identifying immune checkpoint on circulating tumor cells of human pancreatic ductal adenocarcinoma by single-cell RNA sequencing.

STAR Protoc. 2023-9-15

[2]
Rethinking Antigen Source: Cancer Vaccines Based on Whole Tumor Cell/tissue Lysate or Whole Tumor Cell.

Adv Sci (Weinh). 2023-8

[3]
Hyaluronic Acid-Based Nanosystems for CD44 Mediated Anti-Inflammatory and Antinociceptive Activity.

Int J Mol Sci. 2023-4-14

[4]
Adaptive meets innate: CD8 T cells kill MHC-I-negative tumour cells.

Nat Rev Immunol. 2023-5

[5]
Immune checkpoint HLA-E:CD94-NKG2A mediates evasion of circulating tumor cells from NK cell surveillance.

Cancer Cell. 2023-2-13

[6]
Modulating the tumor immune microenvironment with nanoparticles: A sword for improving the efficiency of ovarian cancer immunotherapy.

Front Immunol. 2022

[7]
Application of photo-responsive metal-organic framework in cancer therapy and bioimaging.

Front Bioeng Biotechnol. 2022-10-21

[8]
Combination of phototherapy with immune checkpoint blockade: Theory and practice in cancer.

Front Immunol. 2022

[9]
Loss of MHC-I antigen presentation correlated with immune checkpoint blockade tolerance in MAPK inhibitor-resistant melanoma.

Front Pharmacol. 2022-8-26

[10]
A novel strategy to fuel cancer immunotherapy: targeting glucose metabolism to remodel the tumor microenvironment.

Front Oncol. 2022-7-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索