Munthali Richard J, Richardson Chris G, Pei Julia, Westenberg Jean N, Munro Lonna, Auerbach Randy P, Prescivalli Ana Paula, Vereschagin Melissa, Clarke Quinten K, Wang Angel Y, Vigo Daniel
Department of Psychiatry, University of British Columbia, British Columbia, Canada.
School of Population and Public Health, University of British Columbia, British Columbia, Canada.
J Am Coll Health. 2023 Nov 9:1-11. doi: 10.1080/07448481.2023.2277201.
To identify subgroups of students with distinct profiles of mental health symptoms (MH) and substance use risk (SU) and the extent to which MH history and socio-demographics predict subgroup membership. University students ( = 10,935: 63% female). Repeated cross-sectional survey administered weekly to stratified random samples. Latent class analysis (LCA) was used to identify subgroups and multinomial regression was used to examine associations with variables of interest. LCA identified an optimal 4-latent class solution: High MH-Low SU (47%), Low MH-Low SU (22%), High MH-High SU (19%), and Low MH-High SU (12%). MH history, gender, and ethnicity were associated with membership in the classes with high risk of MH, SU, or both. A substantial proportion of students presented with MH, SU, or both. Gender, ethnicity and MH history is associated with specific patterns of MH and SU, offering potentially useful information to tailor early interventions.
识别具有不同心理健康症状(MH)和物质使用风险(SU)特征的学生亚组,以及MH病史和社会人口统计学因素对亚组成员资格的预测程度。大学生(n = 10935:63%为女性)。每周对分层随机样本进行重复横断面调查。采用潜在类别分析(LCA)识别亚组,并采用多项回归分析来检验与感兴趣变量的关联。LCA确定了一个最佳的4潜类别解决方案:高MH-低SU(47%)、低MH-低SU(22%)、高MH-高SU(19%)和低MH-高SU(12%)。MH病史、性别和种族与具有高MH、SU或两者风险的类别中的成员资格相关。相当一部分学生存在MH、SU或两者兼有。性别、种族和MH病史与MH和SU的特定模式相关,为制定早期干预措施提供了潜在有用的信息。