人工智能和机器学习在糖尿病血糖控制中的应用:最佳实践、陷阱和机遇。
Artificial Intelligence and Machine Learning for Improving Glycemic Control in Diabetes: Best Practices, Pitfalls, and Opportunities.
出版信息
IEEE Rev Biomed Eng. 2024;17:19-41. doi: 10.1109/RBME.2023.3331297. Epub 2024 Jan 12.
OBJECTIVE
Artificial intelligence and machine learning are transforming many fields including medicine. In diabetes, robust biosensing technologies and automated insulin delivery therapies have created a substantial opportunity to improve health. While the number of manuscripts addressing the topic of applying machine learning to diabetes has grown in recent years, there has been a lack of consistency in the methods, metrics, and data used to train and evaluate these algorithms. This manuscript provides consensus guidelines for machine learning practitioners in the field of diabetes, including best practice recommended approaches and warnings about pitfalls to avoid.
METHODS
Algorithmic approaches are reviewed and benefits of different algorithms are discussed including importance of clinical accuracy, explainability, interpretability, and personalization. We review the most common features used in machine learning applications in diabetes glucose control and provide an open-source library of functions for calculating features, as well as a framework for specifying data sets using data sheets. A review of current data sets available for training algorithms is provided as well as an online repository of data sources.
SIGNIFICANCE
These consensus guidelines are designed to improve performance and translatability of new machine learning algorithms developed in the field of diabetes for engineers and data scientists.
目的
人工智能和机器学习正在改变许多领域,包括医学。在糖尿病领域,强大的生物传感技术和自动化胰岛素输送疗法为改善健康提供了巨大的机会。虽然近年来,探讨将机器学习应用于糖尿病的论文数量有所增加,但在训练和评估这些算法时,所使用的方法、指标和数据缺乏一致性。本文为糖尿病领域的机器学习从业者提供了共识指南,包括推荐的最佳实践方法和避免陷阱的警告。
方法
我们回顾了算法方法,并讨论了不同算法的优势,包括临床准确性、可解释性、可解释性和个性化的重要性。我们回顾了在糖尿病葡萄糖控制中使用的最常见的机器学习应用特征,并提供了一个用于计算特征的开源函数库,以及一个使用数据表指定数据集的框架。还提供了当前可用于训练算法的数据集的综述,以及一个在线数据源存储库。
意义
这些共识指南旨在提高糖尿病领域新开发的机器学习算法的性能和可翻译性,为工程师和数据科学家提供帮助。