Parab Rohit, Feeley Jenna M, Valero Maria, Chadalawada Laya, Garcia Gian-Gabriel P, Kar Sudeshna Sil, Madabhushi Anant, Breton Marc D, Li Jing, Shao Hui, Pasquel Francisco J
Division of Endocrinology, Emory University School of Medicine, Atlanta, Georgia.
Nutrition and Health Sciences PhD Program, Laney Graduate School, Emory University, Atlanta, GA.
Endocr Pract. 2025 Jul 17. doi: 10.1016/j.eprac.2025.07.008.
Artificial intelligence (AI) is rapidly transforming clinical medicine, and its impact on diabetes care is especially noteworthy. By enhancing diagnostic accuracy and optimizing treatment strategies, AI can reduce patient burden and improve quality of life. In this narrative review, we examine the latest AI applications in diabetes care, exploring their capabilities, limitations, and the future directions needed to fully translate these advances into routine practice.
A comprehensive search of PubMed, Google Scholar, and ScienceDirect identified relevant articles focused on the use of AI and machine learning (ML) in diabetes care. To enrich the evidence base, we also incorporated emerging approaches from the research programs of the contributing authors. Key findings from these studies were extracted and synthesized to highlight emerging trends, applications, and outcomes.
In recent years, both traditional ML approaches and deep learning algorithms have been applied to improve screening for complications of diabetes such as retinopathy, macular edema, and neuropathy, predict disease progression risk, and enhance clinical decision support systems for diagnosis, prognosis, and treatment optimization. AI-driven solutions are also emerging to identify noninvasive biomarkers for detecting diabetes and prediabetes, analyze the macronutrient content of meals using image-based deep learning methods, integrate novel risk prediction tools within electronic health records, and optimize automated insulin delivery systems.
AI advancements hold promise for streamlining patient care, personalizing treatment plans, and ultimately improving clinical outcomes for individuals living with diabetes.
人工智能(AI)正在迅速改变临床医学,其对糖尿病护理的影响尤其值得关注。通过提高诊断准确性和优化治疗策略,人工智能可以减轻患者负担并改善生活质量。在这篇叙述性综述中,我们研究了糖尿病护理中人工智能的最新应用,探讨了它们的能力、局限性以及将这些进展完全转化为常规实践所需的未来方向。
对PubMed、谷歌学术和科学Direct进行全面检索,确定了专注于人工智能和机器学习(ML)在糖尿病护理中应用的相关文章。为了丰富证据基础,我们还纳入了共同作者研究项目中的新兴方法。提取并综合了这些研究的主要发现,以突出新兴趋势、应用和结果。
近年来,传统的机器学习方法和深度学习算法都已应用于改善糖尿病并发症(如视网膜病变、黄斑水肿和神经病变)的筛查,预测疾病进展风险,并增强用于诊断、预后和治疗优化的临床决策支持系统。人工智能驱动的解决方案也正在涌现,用于识别检测糖尿病和糖尿病前期的非侵入性生物标志物,使用基于图像的深度学习方法分析膳食中的宏量营养素含量,在电子健康记录中整合新型风险预测工具,以及优化自动胰岛素输送系统。
人工智能的进步有望简化患者护理、个性化治疗方案,并最终改善糖尿病患者的临床结局。