Kovatchev Boris P, Colmegna Patricio, Pavan Jacopo, Diaz Castañeda Jenny L, Villa-Tamayo Maria F, Koravi Chaitanya L K, Santini Giulio, Alix Carlene, Stumpf Meaghan, Brown Sue A
Center for Diabetes Technology, University of Virginia School of Medicine, Charlottesville, VA, USA.
School of Data Science, University of Virginia, Charlottesville, VA, USA.
NPJ Digit Med. 2025 May 6;8(1):253. doi: 10.1038/s41746-025-01679-y.
Most automated insulin delivery (AID) algorithms do not adapt to the changing physiology of their users, and none provide interactive means for user adaptation to the actions of AID. This randomised clinical trial tested human-machine co-adaptation to AID using new 'digital twin' replay simulation technology. Seventy-two individuals with T1D completed the 6-month study. The two study arms differed by the order of administration of information feedback (widely used metrics and graphs) and in silico co-adaptation routine, which: (i) transmitted AID data to a cloud application; (ii) mapped each person to their digital twin; (iii) optimized AID control parameters bi-weekly, and (iv) enabled users to experiment with what-if scenarios replayed via their own digital twins. In silico co-adaptation improved the primary outcome, time-in-range (3.9-10 mmol/L), from 72 to 77 percent (p < 0.01) and reduced glycated haemoglobin from 6.8 to 6.6 percent. Information feedback did not have additional effect to AID alone. (Clinical Trials Registration: NCT05610111 (November 10, 2022)).
大多数自动胰岛素给药(AID)算法无法适应使用者不断变化的生理状况,而且没有一种算法提供让使用者适应AID作用的交互方式。这项随机临床试验使用新的“数字孪生”回放模拟技术测试了人机对AID的共同适应情况。72名1型糖尿病患者完成了为期6个月的研究。两个研究组在信息反馈(广泛使用的指标和图表)的给药顺序以及虚拟共同适应程序方面存在差异,该程序:(i)将AID数据传输到云应用程序;(ii)将每个人映射到他们的数字孪生;(iii)每两周优化一次AID控制参数,以及(iv)让使用者能够通过自己的数字孪生对假设情景的回放进行试验。虚拟共同适应改善了主要结局,即血糖在目标范围内的时间(3.9 - 10毫摩尔/升),从72%提高到77%(p < 0.01),并使糖化血红蛋白从6.8%降至6.6%。信息反馈单独对AID没有额外影响。(临床试验注册号:NCT05610111(2022年11月10日))