Suppr超能文献

双对比注意引导的多频融合用于多对比度 MRI 超分辨率。

Dual contrast attention-guided multi-frequency fusion for multi-contrast MRI super-resolution.

机构信息

Shandong Key Laboratory of Medical Physics and Image Processing, Shandong Institute of Industrial Technology for Health Sciences and Precision Medicine, School of Physics and Electronics, Shandong Normal University, Jinan, People's Republic of China.

Department of Radiation Oncology Physics, Shandong Cancer Hospital and Institute, Shandong Cancer Hospital affiliate to Shandong University, Jinan, People's Republic of China.

出版信息

Phys Med Biol. 2023 Dec 22;69(1). doi: 10.1088/1361-6560/ad0b65.

Abstract

. Multi-contrast magnetic resonance (MR) imaging super-resolution (SR) reconstruction is an effective solution for acquiring high-resolution MR images. It utilizes anatomical information from auxiliary contrast images to improve the quality of the target contrast images. However, existing studies have simply explored the relationships between auxiliary contrast and target contrast images but did not fully consider different anatomical information contained in multi-contrast images, resulting in texture details and artifacts unrelated to the target contrast images.. To address these issues, we propose a dual contrast attention-guided multi-frequency fusion (DCAMF) network to reconstruct SR MR images from low-resolution MR images, which adaptively captures relevant anatomical information and processes the texture details and low-frequency information from multi-contrast images in parallel. Specifically, after the feature extraction, a feature selection module based on a dual contrast attention mechanism is proposed to focus on the texture details of the auxiliary contrast images and the low-frequency features of the target contrast images. Then, based on the characteristics of the selected features, a high- and low-frequency fusion decoder is constructed to fuse these features. In addition, a texture-enhancing module is embedded in the high-frequency fusion decoder, to highlight and refine the texture details of the auxiliary contrast and target contrast images. Finally, the high- and low-frequency fusion process is constrained by integrating a deeply-supervised mechanism into the DCAMF network.. The experimental results show that the DCAMF outperforms other state-of-the-art methods. The peak signal-to-noise ratio and structural similarity of DCAMF are 39.02 dB and 0.9771 on the IXI dataset and 37.59 dB and 0.9770 on the BraTS2018 dataset, respectively. The image recovery is further validated in segmentation tasks.. Our proposed SR model can enhance the quality of MR images. The results of the SR study provide a reliable basis for clinical diagnosis and subsequent image-guided treatment.

摘要

多对比度磁共振(MR)图像超分辨率(SR)重建是获取高分辨率 MR 图像的有效解决方案。它利用辅助对比度图像中的解剖信息来提高目标对比度图像的质量。然而,现有的研究只是简单地探索了辅助对比度和目标对比度图像之间的关系,但并没有充分考虑多对比度图像中包含的不同解剖信息,导致与目标对比度图像无关的纹理细节和伪影。为了解决这些问题,我们提出了一种双对比度注意引导多频融合(DCAMF)网络,从低分辨率 MR 图像重建 SR MR 图像,自适应地捕获相关解剖信息,并并行处理多对比度图像的纹理细节和低频信息。具体来说,在特征提取后,提出了一种基于双对比度注意机制的特征选择模块,以关注辅助对比度图像的纹理细节和目标对比度图像的低频特征。然后,基于所选特征的特点,构建了一个高、低频融合解码器来融合这些特征。此外,在高频融合解码器中嵌入了一个纹理增强模块,以突出和细化辅助对比度和目标对比度图像的纹理细节。最后,通过将深度监督机制集成到 DCAMF 网络中,约束高、低频融合过程。实验结果表明,DCAMF 在 IXI 数据集上的峰值信噪比和结构相似性分别为 39.02dB 和 0.9771,在 BraTS2018 数据集上分别为 37.59dB 和 0.9770,优于其他最先进的方法。在分割任务中进一步验证了图像恢复。我们提出的 SR 模型可以提高 MR 图像的质量。SR 研究的结果为临床诊断和随后的图像引导治疗提供了可靠的依据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验