Suppr超能文献

纹理特征引导的图像重建核方法用于F-FDG延迟PET成像。

Texture features-guided image reconstruction kernel method forF-FDG delayed PET imaging.

作者信息

Song Zhichao, Zhang Jianping, Chen Zixiang, Huang Zhenxing, Li Wenbo, Fang Xi, Liu Catherine C, Gao Yunlong, Wang Yihan, Yang Yongfeng, Zheng Hairong, Liang Dong, Song Shaoli, Hu Zhanli

机构信息

School of Mathematics and Statistics, Wuhan University of Technology, Wuhan 430070, People's Republic of China.

Research Center for Medical AI, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, People's Republic of China.

出版信息

Phys Med Biol. 2025 Jul 17;70(14). doi: 10.1088/1361-6560/adee74.

Abstract

Positron emission tomography (PET) is a crucial imaging technology that is widely used for cancer staging and treatment response assessment. Delayed PET imaging (or dual-time-point imaging) involves a second PET acquisition step approximately 33 min after the initial scan in this study, providing more dynamic biological information, improving lesion detectability, and allowing patients to rest during the scan. However, with increasing time, the number of photons in the second scan decreases, which raises the difficulty of the second PET image reconstruction process. Due to the extended time between the tracer injection step and the second PET scan, the photon count during the second scan decreases, leading to difficulties when reconstructing the second PET image. To effectively reconstruct the second image, we propose a new reconstruction algorithm that utilizes texture features from the first PET image to assist in reconstructing the second PET image.In this study, to effectively reconstruct delayed-scan PET images, we propose a novel reconstruction method. This method introduces texture features from the first PET image to assist in the process of reconstructing the second PET image, thereby enabling the PET images to more effectively retain their clinical significance. We extract texture features using the gray level co-occurrence matrix, then combine these features with additional gray-level characteristics to form a new feature vector, which is subsequently incorporated into the kernel-based reconstruction method, enhancing the reconstruction process and improving the quality of the delayed PET image reconstruction. We used the peak signal-to-noise ratio, the mean absolute error and structural similarity index measure (SSIM) as image quality assessment metrics and compared our method with other existing reconstruction methods. In addition, we conducted a more detailed comparison across regions of interest (ROIs).Our experiments were conducted with data acquired from 32 real patients. Compared with other competing methods, our approach achieved a certain level of improvement, with a PSNR value of 32.53 dB and an SSIM of 0.904. Relative to those of the maximum likelihood expectation maximization method, these metrics improved by 13% and 7%, respectively. Within the ROIs, our method also showed closer agreement with the ground truth, preserving the highly metabolic regions in the images.Our method represents a novel application of reconstruction techniques to delayed imaging, incorporating heterogeneous texture features from prior images for the first time. This approach significantly advances the field of medical image processing by improving the reconstruction quality of delayed PET images, providing clinicians with more reliable and detailed information for patient care. Clinically, the texture features in delayed imaging provide structural information that eliminates the need for CT attenuation correction during delayed PET scans, thereby reducing patient radiation exposure and minimizing the risks associated with repeated scanning.

摘要

正电子发射断层扫描(PET)是一种至关重要的成像技术,广泛应用于癌症分期和治疗反应评估。延迟PET成像(或双时间点成像)在本研究中涉及在初始扫描后约33分钟进行第二次PET采集步骤,可提供更多动态生物学信息,提高病变可检测性,并使患者在扫描期间得以休息。然而,随着时间的增加,第二次扫描中的光子数量会减少,这增加了第二次PET图像重建过程的难度。由于示踪剂注射步骤与第二次PET扫描之间的时间延长,第二次扫描期间的光子计数减少,导致在重建第二次PET图像时出现困难。为了有效地重建第二次图像,我们提出了一种新的重建算法,该算法利用第一次PET图像的纹理特征来辅助重建第二次PET图像。

在本研究中,为了有效地重建延迟扫描PET图像,我们提出了一种新颖的重建方法。该方法引入第一次PET图像的纹理特征来辅助第二次PET图像的重建过程,从而使PET图像能够更有效地保留其临床意义。我们使用灰度共生矩阵提取纹理特征,然后将这些特征与其他灰度特征相结合,形成一个新的特征向量,随后将其纳入基于核的重建方法中,增强重建过程并提高延迟PET图像重建的质量。我们使用峰值信噪比、平均绝对误差和结构相似性指数测量(SSIM)作为图像质量评估指标,并将我们的方法与其他现有的重建方法进行比较。此外,我们在感兴趣区域(ROI)进行了更详细的比较。

我们的实验使用从32名真实患者获取的数据进行。与其他竞争方法相比,我们的方法取得了一定程度的改进,峰值信噪比为32.53 dB,SSIM为0.904。相对于最大似然期望最大化方法,这些指标分别提高了13%和7%。在ROI内,我们的方法也与真实情况显示出更紧密的一致性,保留了图像中的高代谢区域。

我们的方法代表了重建技术在延迟成像中的一种新颖应用,首次将来自先前图像的异质纹理特征纳入其中。这种方法通过提高延迟PET图像的重建质量,显著推动了医学图像处理领域的发展,为临床医生提供了更可靠、更详细的患者护理信息。在临床上,延迟成像中的纹理特征提供了结构信息,从而在延迟PET扫描期间无需进行CT衰减校正,从而减少患者的辐射暴露并将与重复扫描相关的风险降至最低。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验