Suppr超能文献

小儿泌尿外科中的人工智能

Artificial Intelligence in Pediatric Urology.

作者信息

Scott Wang Hsin-Hsiao, Vasdev Ranveer, Nelson Caleb P

机构信息

Computational Healthcare Analytics Program, Department of Urology, Boston Children's Hospital, 300 Longwood Avenue, Boston, MA, USA.

Department of Urology, Mayo Clinic Rochester, 200 1st Street Southwest, Rochester, MN 55905, USA.

出版信息

Urol Clin North Am. 2024 Feb;51(1):91-103. doi: 10.1016/j.ucl.2023.08.002. Epub 2023 Sep 15.

Abstract

Application of artificial intelligence (AI) is one of the hottest topics in medicine. Unlike traditional methods that rely heavily on statistical assumptions, machine learning algorithms can identify highly complex patterns from data, allowing robust predictions. There is an abundance of evidence of exponentially increasing pediatric urologic publications using AI methodology in recent years. While these studies show great promise for better understanding of disease and patient care, we should be realistic about the challenges arising from the nature of pediatric urologic conditions and practice, in order to continue to produce high-impact research.

摘要

人工智能(AI)的应用是医学领域最热门的话题之一。与严重依赖统计假设的传统方法不同,机器学习算法能够从数据中识别高度复杂的模式,从而实现可靠的预测。近年来,有大量证据表明使用人工智能方法的儿科泌尿学出版物呈指数级增长。虽然这些研究在更好地理解疾病和患者护理方面显示出巨大潜力,但鉴于儿科泌尿疾病的性质和实际情况所带来的挑战,我们应该保持现实态度,以便继续开展具有高影响力的研究。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验