Schaefer Christoph, Lippmann Martin, Beukers Michiel, Beijer Niels, van de Kamp Ben, Knotter Jaap, Zimmermann Stefan
Institute of Electrical Engineering and Measurement Technology, Department of Sensors and Measurement Technology, Leibniz University Hannover, Appelstr. 9A, Hannover 30167, Germany.
Research Group Technologies for Criminal Investigations, Saxion University of Applied Sciences, M.H Tromplaan 28, Enschede 7513AB, The Netherlands.
Anal Chem. 2023 Nov 21;95(46):17099-17107. doi: 10.1021/acs.analchem.3c04101. Epub 2023 Nov 9.
High Kinetic Energy Ion Mobility Spectrometry (HiKE-IMS) is a versatile technique for the detection of gaseous target molecules that is particularly useful in complex chemical environments, while the instrumental effort is low. Operating HiKE-IMS at reduced pressures from 10 to 60 mbar results in fewer ion-neutral collisions than at ambient pressure, reducing chemical cross-sensitivities and eliminating the need for a preceding separation dimension, e.g., by gas chromatography. In addition, HiKE-IMS allows operation over a wide range of reduced electric field strengths / up to 120 Td, allowing separation of ions by low-field ion mobility and exploiting the field dependence of ion mobility, potentially allowing separation of ion species at high / despite similar low-field ion mobilities. Given these advantages, HiKE-IMS can be a useful tool for trace gas analysis such as triacetone triperoxide (TATP) detection. In this study, we employed HiKE-IMS to detect TATP. We explore the ionization of TATP and the field-dependent ion mobilities, providing a database of the ion mobilities depending on /. Confirming the literature results, ionization of TATP by proton transfer with HO in HiKE-IMS generates fragments, but using NH as the primary reactant ion leads to the TATP·NH adduct. This adduct fragments at high /, which could provide additional information for reliable detection of TATP. Thus, operating HiKE-IMS at variable / in the drift region generates a unique fingerprint of TATP made of all ion species related to TATP and their ion mobilities depending on /, potentially reducing the rate of false positives.
高动能离子迁移谱(HiKE-IMS)是一种用于检测气态目标分子的通用技术,在复杂化学环境中特别有用,而且仪器操作简便。在10至60毫巴的减压条件下运行HiKE-IMS,离子与中性分子的碰撞比在常压下更少,从而降低了化学交叉敏感性,无需进行如气相色谱等前置分离步骤。此外,HiKE-IMS可在高达120 Td的宽范围折合电场强度下运行,能够通过低场离子迁移率分离离子,并利用离子迁移率的场依赖性,即使在高场下/尽管低场离子迁移率相似,也有可能分离离子种类。鉴于这些优势,HiKE-IMS可成为痕量气体分析(如三丙酮三过氧化物(TATP)检测)的有用工具。在本研究中,我们采用HiKE-IMS检测TATP。我们探究了TATP的电离以及场依赖性离子迁移率,提供了一个取决于/的离子迁移率数据库。与文献结果一致,在HiKE-IMS中,TATP通过与HO的质子转移进行电离会产生碎片,但使用NH作为主要反应离子会生成TATP·NH加合物。该加合物在高场下/会发生碎片化,这可为可靠检测TATP提供额外信息。因此,在漂移区以可变/运行HiKE-IMS会生成由所有与TATP相关的离子种类及其取决于/的离子迁移率组成的TATP独特指纹图谱,有可能降低误报率。