Suppr超能文献

用于胰岛素泵故障的基于酮体的警报系统。

Ketone-Based Alert System for Insulin Pump Failures.

作者信息

Aiello Eleonora M, Laffel Lori M, Patti Mary-Elizabeth, Doyle Francis J

机构信息

Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Allston, MA, USA.

Sansum Diabetes Research Institute, Santa Barbara, CA, USA.

出版信息

J Diabetes Sci Technol. 2025 May;19(3):683-691. doi: 10.1177/19322968231209339. Epub 2023 Nov 9.

Abstract

BACKGROUND

An increasing number of individuals with type 1 diabetes (T1D) manage glycemia with insulin pumps containing short-acting insulin. If insulin delivery is interrupted for even a few hours due to pump or infusion site malfunction, the resulting insulin deficiency can rapidly initiate ketogenesis and diabetic ketoacidosis (DKA).

METHODS

To detect an event of accidental cessation of insulin delivery, we propose the design of ketone-based alert system (K-AS). This system relies on an extended Kalman filter based on plasma 3-beta-hydroxybutyrate (BOHB) measurements to estimate the disturbance acting on the insulin infusion/injection input. The alert system is based on a novel physiological model capable of simulating the ketone body turnover in response to a change in plasma insulin levels. Simulated plasma BOHB levels were compared with plasma BOHB levels available in the literature. We evaluated the performance of the K-AS on 10 in silico subjects using the S2014 UVA/Padova simulator for two different scenarios.

RESULTS

The K-AS achieves an average detection time of 84 and 55.5 minutes in fasting and postprandial conditions, respectively, which compares favorably and improves against a detection time of 193 and 120 minutes, respectively, based on the current guidelines.

CONCLUSIONS

The K-AS leverages the rapid rate of increase of plasma BOHB to achieve short detection time in order to prevent BOHB levels from rising to dangerous levels, without any false-positive alarms. Moreover, the proposed novel insulin-BOHB model will allow us to understand the efficacy of treatment without compromising patient safety.

摘要

背景

越来越多的1型糖尿病(T1D)患者使用含有短效胰岛素的胰岛素泵来管理血糖。如果由于泵或输注部位故障导致胰岛素输送中断哪怕几个小时,由此产生的胰岛素缺乏会迅速引发酮生成和糖尿病酮症酸中毒(DKA)。

方法

为了检测胰岛素输送意外停止事件,我们提出了基于酮体的警报系统(K-AS)的设计。该系统基于基于血浆3-β-羟基丁酸(BOHB)测量的扩展卡尔曼滤波器来估计作用于胰岛素输注/注射输入的干扰。警报系统基于一种新型生理模型,该模型能够模拟酮体周转以响应血浆胰岛素水平的变化。将模拟的血浆BOHB水平与文献中可用的血浆BOHB水平进行比较。我们使用S2014 UVA/帕多瓦模拟器在两种不同情况下对10个虚拟受试者评估了K-AS的性能。

结果

K-AS在空腹和餐后条件下的平均检测时间分别为84分钟和55.5分钟,与基于当前指南分别为193分钟和120分钟的检测时间相比具有优势且有所改善。

结论

K-AS利用血浆BOHB的快速上升速率实现短检测时间,以防止BOHB水平上升到危险水平,且无任何误报。此外,所提出的新型胰岛素-BOHB模型将使我们能够在不损害患者安全的情况下了解治疗效果。

相似文献

1
Ketone-Based Alert System for Insulin Pump Failures.用于胰岛素泵故障的基于酮体的警报系统。
J Diabetes Sci Technol. 2025 May;19(3):683-691. doi: 10.1177/19322968231209339. Epub 2023 Nov 9.

本文引用的文献

2
Continuous Ketone Monitoring Consensus Report 2021.2021 年连续酮体监测共识报告。
J Diabetes Sci Technol. 2022 May;16(3):689-715. doi: 10.1177/19322968211042656. Epub 2021 Oct 4.
7
Modeling Ketogenesis for Use in Pediatric Diabetes Simulation.建模酮体生成用于儿科糖尿病模拟。
J Diabetes Sci Technol. 2021 Mar;15(2):303-308. doi: 10.1177/1932296819882058. Epub 2019 Oct 14.
9
6. Glycemic Targets: .6. 血糖目标: 。
Diabetes Care. 2019 Jan;42(Suppl 1):S61-S70. doi: 10.2337/dc19-S006.
10
Modeling Subcutaneous Absorption of Fast-Acting Insulin in Type 1 Diabetes.建模 1 型糖尿病患者速效胰岛素的皮下吸收。
IEEE Trans Biomed Eng. 2018 Sep;65(9):2079-2086. doi: 10.1109/TBME.2017.2784101. Epub 2017 Dec 15.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验