Suppr超能文献

代谢中表型预测的局限性。

The limitations of phenotype prediction in metabolism.

机构信息

Logic of Genomic Systems Lab, CNB-CSIC, Madrid, Spain.

出版信息

PLoS Comput Biol. 2023 Nov 10;19(11):e1011631. doi: 10.1371/journal.pcbi.1011631. eCollection 2023 Nov.

Abstract

Phenotype prediction is at the center of many questions in biology. Prediction is often achieved by determining statistical associations between genetic and phenotypic variation, ignoring the exact processes that cause the phenotype. Here, we present a framework based on genome-scale metabolic reconstructions to reveal the mechanisms behind the associations. We calculated a polygenic score (PGS) that identifies a set of enzymes as predictors of growth, the phenotype. This set arises from the synergy of the functional mode of metabolism in a particular setting and its evolutionary history, and is suitable to infer the phenotype across a variety of conditions. We also find that there is optimal genetic variation for predictability and demonstrate how the linear PGS can still explain phenotypes generated by the underlying nonlinear biochemistry. Therefore, the explicit model interprets the black box statistical associations of the genotype-to-phenotype map and helps to discover what limits the prediction in metabolism.

摘要

表型预测是生物学中许多问题的核心。预测通常通过确定遗传和表型变异之间的统计关联来实现,而忽略了导致表型的具体过程。在这里,我们提出了一个基于基因组规模代谢重建的框架,以揭示关联背后的机制。我们计算了一个多基因评分(PGS),该评分确定了一组酶作为生长(表型)的预测因子。该集合源自特定环境中代谢功能模式的协同作用及其进化历史,并且适合在各种条件下推断表型。我们还发现存在可预测性的最佳遗传变异,并展示了线性 PGS 如何仍然可以解释潜在非线性生物化学产生的表型。因此,显式模型解释了基因型-表型图的黑盒统计关联,并有助于发现代谢中限制预测的因素。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1753/10664875/d6d19c62cfc0/pcbi.1011631.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验