The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, 8210, Aarhus V, Denmark.
National Centre for Register-Based Research, Aarhus University, 8210, Aarhus V, Denmark.
Nat Commun. 2023 Aug 5;14(1):4702. doi: 10.1038/s41467-023-40330-w.
The predictive performance of polygenic scores (PGS) is largely dependent on the number of samples available to train the PGS. Increasing the sample size for a specific phenotype is expensive and takes time, but this sample size can be effectively increased by using genetically correlated phenotypes. We propose a framework to generate multi-PGS from thousands of publicly available genome-wide association studies (GWAS) with no need to individually select the most relevant ones. In this study, the multi-PGS framework increases prediction accuracy over single PGS for all included psychiatric disorders and other available outcomes, with prediction R increases of up to 9-fold for attention-deficit/hyperactivity disorder compared to a single PGS. We also generate multi-PGS for phenotypes without an existing GWAS and for case-case predictions. We benchmark the multi-PGS framework against other methods and highlight its potential application to new emerging biobanks.
多基因评分(PGS)的预测性能在很大程度上取决于用于训练 PGS 的样本数量。增加特定表型的样本量既昂贵又耗时,但通过使用遗传相关的表型可以有效地增加样本量。我们提出了一种从数千项公开的全基因组关联研究(GWAS)中生成多基因评分的框架,而无需单独选择最相关的基因。在这项研究中,多基因评分框架增加了所有纳入的精神障碍和其他可用结果的单基因评分的预测准确性,与单基因评分相比,注意力缺陷/多动障碍的预测 R 增加了高达 9 倍。我们还为没有现有 GWAS 的表型和病例对照预测生成多基因评分。我们将多基因评分框架与其他方法进行了基准测试,并强调了其在新出现的生物库中的潜在应用。