Donald Danforth Plant Science Center, 975 N Warson Rd, St. Louis, MO 63132, USA; Department of Biology, University of Missouri - St. Louis, 1 University Blvd, St. Louis, MO 63121, USA.
AGROSAVIA - Corporación colombiana de investigación agropecuaria, Bogotá, Bogotá D.C. 250047, Colombia.
Curr Biol. 2023 Dec 4;33(23):5215-5224.e5. doi: 10.1016/j.cub.2023.10.023. Epub 2023 Nov 9.
Understanding how population-size homeostasis emerges from stochastic individual cell behaviors remains a challenge in biology. The unicellular green alga Chlamydomonas reinhardtii (Chlamydomonas) proliferates using a multiple fission cell cycle, where a prolonged G1 phase is followed by n rounds of alternating division cycles (S/M) to produce 2 daughters. A "Commitment" sizer in mid-G1 phase ensures sufficient cell growth before completing the cell cycle. A mitotic sizer couples mother-cell size to division number (n) such that daughter size distributions are uniform regardless of mother size distributions. Although daughter size distributions were highly robust to altered growth conditions, ∼40% of daughter cells fell outside of the 2-fold range expected from a "perfect" multiple fission sizer. A simple intuitive power law model with stochastic noise failed to reproduce individual division behaviors of tracked single cells. Through additional iterative modeling, we identified an alternative modified threshold (MT) model, where cells need to cross a threshold greater than 2-fold their median starting size to become division-competent (i.e., Committed), after which their behaviors followed a power law model. The Commitment versus mitotic size threshold uncoupling in the MT model was likely a key pre-adaptation in the evolution of volvocine algal multicellularity. A similar experimental approach was used in size mutants mat3/rbr and dp1 that are, respectively, missing repressor or activator subunits of the retinoblastoma tumor suppressor complex (RBC). Both mutants showed altered relationships between Commitment and mitotic sizer, suggesting that RBC functions to decouple the two sizers.
理解种群大小平衡如何从随机的单个细胞行为中产生,仍然是生物学中的一个挑战。单细胞绿藻莱茵衣藻(Chlamydomonas)通过多次分裂的细胞周期进行增殖,其中一个延长的 G1 期之后是 n 轮交替的分裂周期(S/M),产生 2 个子代。在完成细胞周期之前,中期 G1 期的“承诺”定标器确保有足够的细胞生长。有丝分裂定标器将母细胞大小与分裂次数(n)耦合,使得子细胞大小分布均匀,与母细胞大小分布无关。尽管子细胞大小分布对改变的生长条件具有高度的稳健性,但约 40%的子细胞落在预期的 2 倍范围之外,这与“完美”的多次分裂定标器不符。一个具有随机噪声的简单直观的幂律模型未能复制跟踪单个细胞的个别分裂行为。通过额外的迭代建模,我们确定了一种替代的修正阈值(MT)模型,其中细胞需要跨越大于其起始大小中位数 2 倍的阈值才能成为有分裂能力的(即“承诺”),之后它们的行为遵循幂律模型。在 MT 模型中,承诺与有丝分裂大小阈值的解耦可能是轮藻藻类多细胞性进化的一个关键预适应。类似的实验方法也用于大小突变体 mat3/rbr 和 dp1,它们分别缺少视网膜母细胞瘤肿瘤抑制复合物(RBC)的抑制剂或激活剂亚基。这两种突变体都显示出承诺和有丝分裂定标器之间的关系发生了改变,这表明 RBC 功能可将两个定标器解耦。