The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
The Shengcheng Street Health Center, Shouguang, 262700, China.
BMC Cardiovasc Disord. 2023 Nov 16;23(1):561. doi: 10.1186/s12872-023-03599-9.
Atrial fibrillation (AF) is a common heart rhythm disorder that can lead to complications such as stroke and heart failure. Radiofrequency ablation (RFA) is a procedure used to treat AF, but it is not always successful in maintaining a normal heart rhythm. This study aimed to construct a clinical prediction model based on extreme gradient boosting (XGBoost) for AF recurrence 12 months after ablation.
The 27-dimensional data of 359 patients with AF undergoing RFA in the First Affiliated Hospital of Soochow University from October 2018 to November 2021 were retrospectively analysed. We adopted the logistic regression, support vector machine (SVM), random forest (RF) and XGBoost methods to conduct the experiment. To evaluate the performance of the prediction, we used the area under the receiver operating characteristic curve (AUC), the area under the precision-recall curve (AP), and calibration curves of both the training and testing sets. Finally, Shapley additive explanations (SHAP) were utilized to explain the significance of the variables.
Of the 27-dimensional variables, ejection fraction (EF) of the left atrial appendage (LAA), N-terminal probrain natriuretic peptide (NT-proBNP), global peak longitudinal strain of the LAA (LAAGPLS), left atrial diameter (LAD), diabetes mellitus (DM) history, and female sex had a significant role in the predictive model. The experimental results demonstrated that XGBoost exhibited the best performance among these methods, and the accuracy, specificity, sensitivity, precision and F1 score (a measure of test accuracy) of XGBoost were 86.1%, 89.7%, 71.4%, 62.5% and 0.67, respectively. In addition, SHAP analysis also proved that the 6 parameters were decisive for the effect of the XGBoost-based prediction model.
We proposed an effective model based on XGBoost that can be used to predict the recurrence of AF patients after RFA. This prediction result can guide treatment decisions and help to optimize the management of AF.
心房颤动(AF)是一种常见的心律失常,可导致中风和心力衰竭等并发症。射频消融(RFA)是一种用于治疗 AF 的方法,但并不总是能成功维持正常的心律。本研究旨在构建一种基于极端梯度增强(XGBoost)的 AF 消融后 12 个月复发的临床预测模型。
回顾性分析 2018 年 10 月至 2021 年 11 月在苏州大学第一附属医院接受 RFA 的 359 例 AF 患者的 27 维数据。采用逻辑回归、支持向量机(SVM)、随机森林(RF)和 XGBoost 方法进行实验。为了评估预测性能,我们使用了接收者操作特征曲线(ROC)下面积(AUC)、精确召回曲线(PR)下面积(AP)和训练集和测试集的校准曲线。最后,利用 Shapley 加性解释(SHAP)解释变量的重要性。
在 27 维变量中,左心耳(LAA)射血分数(EF)、N 端脑利钠肽前体(NT-proBNP)、LAA 整体纵向应变峰值(LAAGPLS)、左心房直径(LAD)、糖尿病史和女性对预测模型有显著作用。实验结果表明,XGBoost 在这些方法中表现最好,XGBoost 的准确率、特异性、敏感性、精度和 F1 得分(衡量测试准确性)分别为 86.1%、89.7%、71.4%、62.5%和 0.67。此外,SHAP 分析也证明了这 6 个参数对 XGBoost 预测模型的效果具有决定性作用。
我们提出了一种基于 XGBoost 的有效模型,可用于预测 RFA 后 AF 患者的复发。该预测结果可以指导治疗决策,有助于优化 AF 的管理。