Suppr超能文献

肌强直性营养不良 2 型相关 CCTG 四核苷酸重复序列的大规模收缩通过双链断裂修复发生,该过程需要不同的 DNA 解旋酶。

Massive contractions of myotonic dystrophy type 2-associated CCTG tetranucleotide repeats occur via double-strand break repair with distinct requirements for DNA helicases.

机构信息

Department of Biological Sciences, California State University San Marcos, San Marcos, CA 92078, USA.

Department of Biology, Tufts University, Medford, MA 02155, USA.

出版信息

G3 (Bethesda). 2024 Feb 7;14(2). doi: 10.1093/g3journal/jkad257.

Abstract

Myotonic dystrophy type 2 (DM2) is a genetic disease caused by expanded CCTG DNA repeats in the first intron of CNBP. The number of CCTG repeats in DM2 patients ranges from 75 to 11,000, yet little is known about the molecular mechanisms responsible for repeat expansions or contractions. We developed an experimental system in Saccharomyces cerevisiae that enables the selection of large-scale contractions of (CCTG)100 within the intron of a reporter gene and subsequent genetic analysis. Contractions exceeded 80 repeat units, causing the final repetitive tract to be well below the threshold for disease. We found that Rad51 and Rad52 are involved in these massive contractions, indicating a mechanism that uses homologous recombination. Srs2 helicase was shown previously to stabilize CTG, CAG, and CGG repeats. Loss of Srs2 did not significantly affect CCTG contraction rates in unperturbed conditions. In contrast, loss of the RecQ helicase Sgs1 resulted in a 6-fold decrease in contraction rate with specific evidence that helicase activity is required for large-scale contractions. Using a genetic assay to evaluate chromosome arm loss, we determined that CCTG and reverse complementary CAGG repeats elevate the rate of chromosomal fragility compared to a short-track control. Overall, our results demonstrate that the genetic control of CCTG repeat contractions is notably distinct among disease-causing microsatellite repeat sequences.

摘要

肌强直性营养不良 2 型(DM2)是一种由 CNBP 基因第一个内含子中 CCTG DNA 重复序列扩展引起的遗传疾病。DM2 患者的 CCTG 重复次数从 75 到 11000 不等,但对于导致重复扩展或收缩的分子机制知之甚少。我们在酿酒酵母中开发了一种实验系统,该系统能够选择在报告基因内含子中(CCTG)100 的大规模收缩,并进行随后的遗传分析。收缩超过 80 个重复单位,导致最终重复序列低于疾病的阈值。我们发现 Rad51 和 Rad52 参与了这些大规模的收缩,表明这是一种利用同源重组的机制。先前已经表明 Srs2 解旋酶稳定 CTG、CAG 和 CGG 重复。在未受干扰的条件下,Srs2 的缺失并没有显著影响 CCTG 的收缩率。相比之下,RecQ 解旋酶 Sgs1 的缺失导致收缩率降低了 6 倍,有具体证据表明解旋酶活性是大规模收缩所必需的。使用遗传测定来评估染色体臂缺失,我们确定 CCTG 和反向互补 CAGG 重复与短轨道对照相比会增加染色体脆弱性的速度。总的来说,我们的研究结果表明,CCTG 重复收缩的遗传控制在致病微卫星重复序列中明显不同。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fc38/10849350/c5db96e1cb2c/jkad257f1.jpg

相似文献

3
DM2 CCTG*CAGG repeats are crossover hotspots that are more prone to expansions than the DM1 CTG*CAG repeats in Escherichia coli.
J Mol Biol. 2006 Jun 30;360(1):21-36. doi: 10.1016/j.jmb.2006.05.012. Epub 2006 May 19.
5
SRS2 and SGS1 prevent chromosomal breaks and stabilize triplet repeats by restraining recombination.
Nat Struct Mol Biol. 2009 Feb;16(2):159-67. doi: 10.1038/nsmb.1544. Epub 2009 Jan 11.
8
A Z-DNA sequence reduces slipped-strand structure formation in the myotonic dystrophy type 2 (CCTG) x (CAGG) repeat.
Proc Natl Acad Sci U S A. 2009 Mar 3;106(9):3270-5. doi: 10.1073/pnas.0807699106. Epub 2009 Feb 13.
9
Unusual structures of CCTG repeats and their participation in repeat expansion.
Biomol Concepts. 2016 Dec 1;7(5-6):331-340. doi: 10.1515/bmc-2016-0024.
10
Resection and repair of a Cas9 double-strand break at CTG trinucleotide repeats induces local and extensive chromosomal deletions.
PLoS Genet. 2020 Jul 16;16(7):e1008924. doi: 10.1371/journal.pgen.1008924. eCollection 2020 Jul.

引用本文的文献

1
The micromammals.
G3 (Bethesda). 2024 Jun 5;14(6). doi: 10.1093/g3journal/jkae073.

本文引用的文献

1
Molecular Therapies for Myotonic Dystrophy Type 1: From Small Drugs to Gene Editing.
Int J Mol Sci. 2022 Apr 21;23(9):4622. doi: 10.3390/ijms23094622.
2
Homologous recombination within repetitive DNA.
Curr Opin Genet Dev. 2021 Dec;71:143-153. doi: 10.1016/j.gde.2021.08.005. Epub 2021 Aug 28.
3
Coordinated and Independent Roles for MLH Subunits in DNA Repair.
Cells. 2021 Apr 20;10(4):948. doi: 10.3390/cells10040948.
4
Modifiers of CAG/CTG Repeat Instability: Insights from Mammalian Models.
J Huntingtons Dis. 2021;10(1):123-148. doi: 10.3233/JHD-200426.
5
Alternative DNA Structures : Molecular Evidence and Remaining Questions.
Microbiol Mol Biol Rev. 2020 Dec 23;85(1). doi: 10.1128/MMBR.00110-20. Print 2021 Feb 17.
6
Maintenance of Yeast Genome Integrity by RecQ Family DNA Helicases.
Genes (Basel). 2020 Feb 18;11(2):205. doi: 10.3390/genes11020205.
7
A slipped-CAG DNA-binding small molecule induces trinucleotide-repeat contractions in vivo.
Nat Genet. 2020 Feb;52(2):146-159. doi: 10.1038/s41588-019-0575-8. Epub 2020 Feb 14.
8
On the wrong DNA track: Molecular mechanisms of repeat-mediated genome instability.
J Biol Chem. 2020 Mar 27;295(13):4134-4170. doi: 10.1074/jbc.REV119.007678. Epub 2020 Feb 14.
9
Large-scale contractions of Friedreich's ataxia GAA repeats in yeast occur during DNA replication due to their triplex-forming ability.
Proc Natl Acad Sci U S A. 2020 Jan 21;117(3):1628-1637. doi: 10.1073/pnas.1913416117. Epub 2020 Jan 7.
10
Genetic Assays to Study Repeat Fragility in Saccharomyces cerevisiae.
Methods Mol Biol. 2020;2056:83-101. doi: 10.1007/978-1-4939-9784-8_5.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验