Suppr超能文献

基于深度学习的作物器官分割中点云下采样策略的比较研究

A comparative study on point cloud down-sampling strategies for deep learning-based crop organ segmentation.

作者信息

Li Dawei, Wei Yongchang, Zhu Rongsheng

机构信息

Engineering Research Center of Digitized Textile and Fashion Technology, Ministry of Education, Donghua University, Shanghai, 201620, China.

College of Information Sciences and Technology, Donghua University, Shanghai, 201620, China.

出版信息

Plant Methods. 2023 Nov 11;19(1):124. doi: 10.1186/s13007-023-01099-7.

Abstract

The 3D crop data obtained during cultivation is of great significance to screening excellent varieties in modern breeding and improvement on crop yield. With the rapid development of deep learning, researchers have been making innovations in aspects of both data preparation and deep network design for segmenting plant organs from 3D data. Training of the deep learning network requires the input point cloud to have a fixed scale, which means all point clouds in the batch should have similar scale and contain the same number of points. A good down-sampling strategy can reduce the impact of noise and meanwhile preserve the most important 3D spatial structures. As far as we know, this work is the first comprehensive study of the relationship between multiple down-sampling strategies and the performances of popular networks for plant point clouds. Five down-sampling strategies (including FPS, RS, UVS, VFPS, and 3DEPS) are cross evaluated on five different segmentation networks (including PointNet +  + , DGCNN, PlantNet, ASIS, and PSegNet). The overall experimental results show that currently there is no strict golden rule on fixing down-sampling strategy for a specific mainstream crop deep learning network, and the optimal down-sampling strategy may vary on different networks. However, some general experience for choosing an appropriate sampling method for a specific network can still be summarized from the qualitative and quantitative experiments. First, 3DEPS and UVS are easy to generate better results on semantic segmentation networks. Second, the voxel-based down-sampling strategies may be more suitable for complex dual-function networks. Third, at 4096-point resolution, 3DEPS usually has only a small margin compared with the best down-sampling strategy at most cases, which means 3DEPS may be the most stable strategy across all compared. This study not only helps to further improve the accuracy of point cloud deep learning networks for crop organ segmentation, but also gives clue to the alignment of down-sampling strategies and a specific network.

摘要

在作物种植过程中获取的三维作物数据对于现代育种中筛选优良品种以及提高作物产量具有重要意义。随着深度学习的快速发展,研究人员在从三维数据中分割植物器官的数据准备和深度网络设计方面不断创新。深度学习网络的训练要求输入点云具有固定的尺度,这意味着批次中的所有点云应具有相似的尺度且包含相同数量的点。良好的下采样策略可以减少噪声的影响,同时保留最重要的三维空间结构。据我们所知,这项工作是对多种下采样策略与用于植物点云的流行网络性能之间关系的首次全面研究。在五个不同的分割网络(包括PointNet++、DGCNN、PlantNet、ASIS和PSegNet)上对五种下采样策略(包括FPS、RS、UVS、VFPS和3DEPS)进行交叉评估。总体实验结果表明,目前对于特定的主流作物深度学习网络,在确定下采样策略方面没有严格的黄金法则,并且最优的下采样策略可能因网络不同而有所变化。然而,仍然可以从定性和定量实验中总结出一些为特定网络选择合适采样方法的一般经验。首先,3DEPS和UVS在语义分割网络上更容易产生较好的结果。其次,基于体素的下采样策略可能更适合复杂的双功能网络。第三,在4096点分辨率下,3DEPS在大多数情况下与最佳下采样策略相比通常只有很小的差距,这意味着3DEPS可能是所有比较策略中最稳定的。这项研究不仅有助于进一步提高用于作物器官分割的点云深度学习网络的准确性,还为下采样策略与特定网络的匹配提供了线索。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/566c/10640751/e7fc1fe0a380/13007_2023_1099_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验