Ghahremani Morteza, Williams Kevin, Corke Fiona M K, Tiddeman Bernard, Liu Yonghuai, Doonan John H
National Plant Phenomics Centre, Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth, United Kingdom.
Department of Computer Science, Aberystwyth University, Aberystwyth, United Kingdom.
Front Plant Sci. 2021 Mar 24;12:608732. doi: 10.3389/fpls.2021.608732. eCollection 2021.
The 3D analysis of plants has become increasingly effective in modeling the relative structure of organs and other traits of interest. In this paper, we introduce a novel pattern-based deep neural network, Pattern-Net, for segmentation of point clouds of wheat. This study is the first to segment the point clouds of wheat into defined organs and to analyse their traits directly in 3D space. Point clouds have no regular grid and thus their segmentation is challenging. Pattern-Net creates a dynamic link among neighbors to seek stable patterns from a 3D point set across several levels of abstraction using the K-nearest neighbor algorithm. To this end, different layers are connected to each other to create complex patterns from the simple ones, strengthen dynamic link propagation, alleviate the vanishing-gradient problem, encourage link reuse and substantially reduce the number of parameters. The proposed deep network is capable of analysing and decomposing unstructured complex point clouds into semantically meaningful parts. Experiments on a wheat dataset verify the effectiveness of our approach for segmentation of wheat in 3D space.
植物的三维分析在模拟器官的相对结构和其他感兴趣的性状方面变得越来越有效。在本文中,我们介绍了一种新颖的基于模式的深度神经网络Pattern-Net,用于小麦点云的分割。本研究首次将小麦点云分割成明确的器官,并直接在三维空间中分析其性状。点云没有规则网格,因此其分割具有挑战性。Pattern-Net使用K近邻算法在几个抽象层次上的三维点集中创建邻居之间的动态链接,以寻找稳定模式。为此,不同层相互连接,从简单模式创建复杂模式,加强动态链接传播,缓解梯度消失问题,鼓励链接重用,并大幅减少参数数量。所提出的深度网络能够将无结构的复杂点云分析并分解为语义上有意义的部分。在小麦数据集上的实验验证了我们的方法在三维空间中分割小麦的有效性。