Suppr超能文献

基于3D点的深度学习方法对玫瑰丛植物结构部分的分割

Segmentation of structural parts of rosebush plants with 3D point-based deep learning methods.

作者信息

Turgut Kaya, Dutagaci Helin, Galopin Gilles, Rousseau David

机构信息

Eskisehir Osmangazi University, 26040, Eskisehir, Turkey.

INRAe, UMR1345 Institut de Recherche en Horticulture et Semences, 42 Georges Morel CS 60057, 49071, Beaucouze, France.

出版信息

Plant Methods. 2022 Feb 20;18(1):20. doi: 10.1186/s13007-022-00857-3.

Abstract

BACKGROUND

Segmentation of structural parts of 3D models of plants is an important step for plant phenotyping, especially for monitoring architectural and morphological traits. Current state-of-the art approaches rely on hand-crafted 3D local features for modeling geometric variations in plant structures. While recent advancements in deep learning on point clouds have the potential of extracting relevant local and global characteristics, the scarcity of labeled 3D plant data impedes the exploration of this potential.

RESULTS

We adapted six recent point-based deep learning architectures (PointNet, PointNet++, DGCNN, PointCNN, ShellNet, RIConv) for segmentation of structural parts of rosebush models. We generated 3D synthetic rosebush models to provide adequate amount of labeled data for modification and pre-training of these architectures. To evaluate their performance on real rosebush plants, we used the ROSE-X data set of fully annotated point cloud models. We provided experiments with and without the incorporation of synthetic data to demonstrate the potential of point-based deep learning techniques even with limited labeled data of real plants.

CONCLUSION

The experimental results show that PointNet++ produces the highest segmentation accuracy among the six point-based deep learning methods. The advantage of PointNet++ is that it provides a flexibility in the scales of the hierarchical organization of the point cloud data. Pre-training with synthetic 3D models boosted the performance of all architectures, except for PointNet.

摘要

背景

植物三维模型结构部分的分割是植物表型分析的重要一步,特别是对于监测植物的结构和形态特征。当前的先进方法依赖手工制作的三维局部特征来建模植物结构中的几何变化。虽然近年来点云深度学习的进展有潜力提取相关的局部和全局特征,但标记的三维植物数据的稀缺阻碍了对这一潜力的探索。

结果

我们采用了六种最近基于点的深度学习架构(PointNet、PointNet++、DGCNN、PointCNN、ShellNet、RIConv)对玫瑰丛模型的结构部分进行分割。我们生成了三维合成玫瑰丛模型,为这些架构的修改和预训练提供足够数量的标记数据。为了评估它们在真实玫瑰丛植物上的性能,我们使用了完全注释的点云模型的ROSE-X数据集。我们提供了有无合成数据结合的实验,以证明即使在真实植物标记数据有限的情况下,基于点的深度学习技术的潜力。

结论

实验结果表明,PointNet++在六种基于点的深度学习方法中产生了最高的分割精度。PointNet++的优势在于它在点云数据分层组织的尺度上提供了灵活性。除了PointNet之外,使用合成三维模型进行预训练提高了所有架构的性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验