UFZ - Helmholtz Centre for Environmental Research, Dept. System-Ecotoxicology, Permoserstrasse 15, D-04318 Leipzig, Germany; RWTH Aachen University, Institute for Environmental Research (Biology V), Worringerweg 1, 52074 Aachen, Germany.
UFZ - Helmholtz Centre for Environmental Research, Dept. System-Ecotoxicology, Permoserstrasse 15, D-04318 Leipzig, Germany; RPTU Kaiserslautern-Landau, Institute for Environmental Sciences, Fortstr. 7, 76829 Landau, Germany.
Sci Total Environ. 2024 Jan 20;909:168368. doi: 10.1016/j.scitotenv.2023.168368. Epub 2023 Nov 10.
Short pulses of toxicants can cause latent effects that occur long after the contamination event and are currently unpredictable. Here, we introduce an analytical framework for mechanistically predicting latent effects considering interactive effects of multiple stressors and hormetic effect compensation. We conducted an extensive investigation using high temporal resolution microcosm data of the mayfly Cloeon dipterum exposed to the pyrethroid pesticide esfenvalerate for 1 h. For 6 pesticide concentrations and 3 food levels we identified daily general stress information and predicted their synergistic interactions using the Stress Addition Model (SAM). Our analysis revealed that, especially at low concentrations, latent effects contributed most to the overall effect. At low concentrations ranging from 1/100 to 1/10,000 of the acute LC, resulting in a 30-15 % mortality, latent effects prevailed, accounting for 92 % to 100 % of the observed effects. Notably, the concentration causing 15 % mortality 29 days post-exposure was 1000 times lower than the concentration causing the same mortality 4 days post-exposure, emphasizing the time-dependent nature of this Latent-Effect-Amplification (LEA). We identified both acute mortality and latent effects of pesticides on emergence. Furthermore, we observed pesticide-induced compensation mechanisms at both individual and population levels, transforming the initial monotonic concentration-response relationship into a hormetic, tri-phasic response pattern. Combining these processes enabled a quantification of the underlying causes of latent effects. Our findings highlight that short-term pesticide exposures can lead to latent effects of particular significance, especially at low effect concentrations.
短时间的毒物脉冲会导致潜伏效应,这种效应会在污染事件发生很久后才出现,而且目前是无法预测的。在这里,我们引入了一个分析框架,用于考虑多种胁迫因素的交互作用和毒物兴奋效应补偿来对潜伏效应进行机制预测。我们使用在短时间内对水黾(Cloeon dipterum)暴露于拟除虫菊酯 esfenvalerate 中进行了广泛的研究,该研究使用高时间分辨率微宇宙数据进行。对于 6 种农药浓度和 3 种食物水平,我们确定了日常总应激信息,并使用应激加和模型(SAM)预测了它们的协同相互作用。我们的分析表明,特别是在低浓度下,潜伏效应对整体效应的贡献最大。在低浓度范围从急性 LC 的 1/100 到 1/10,000 之间,导致 30-15%的死亡率,潜伏效应占观察到的效应的 92%到 100%。值得注意的是,引起 29 天潜伏期 15%死亡率的浓度比引起 4 天潜伏期 15%死亡率的浓度低 1000 倍,这强调了这种潜伏效应放大(LEA)的时间依赖性。我们确定了农药对出现的急性死亡率和潜伏效应。此外,我们观察到个体和种群水平的农药诱导补偿机制,将初始单调的浓度-反应关系转化为毒物兴奋的三阶段反应模式。将这些过程结合起来,可以量化潜伏效应的潜在原因。我们的研究结果表明,短期农药暴露会导致潜伏效应,尤其是在低浓度下。