Kim Jihoo, Jeong Yoonho, Kim Won June, Lee Eok Kyun, Choi Insung S
Department of Chemistry, KAIST, Daejeon, 34141, Korea.
Department of Biology and Chemistry, Changwon National University, Changwon, 51140, Korea.
Chem Asian J. 2024 Jan 2;19(1):e202300684. doi: 10.1002/asia.202300684. Epub 2023 Nov 22.
Although deep-learning (DL) models suggest unprecedented prediction capabilities in tackling various chemical problems, their demonstrated tasks have so far been limited to the scalar properties including the magnitude of vectorial properties, such as molecular dipole moments. A rotation-equivariant MolNet_Equi model, proposed in this paper, understands and recognizes the molecular rotation in the 3D Euclidean space, and exhibits the ability to predict directional dipole moments in the rotation-sensitive mode, as well as showing superior performance for the prediction of scalar properties. Three consecutive operations of molecular rotation , dipole-moment prediction , and dipole-moment inverse-rotation do not alter the original prediction of the total dipole moment of a molecule , assuring the rotational equivariance of MolNet_Equi. Furthermore, MolNet_Equi faithfully predicts the absolute direction of dipole moments given molecular poses, albeit the model has been trained only with the information on dipole-moment magnitudes, not directions. This work highlights the potential of incorporating fundamental yet crucial chemical rules and concepts into DL models, leading to the development of chemically intuitive models.
尽管深度学习(DL)模型在解决各种化学问题方面展现出了前所未有的预测能力,但迄今为止,其已展示的任务仅限于标量性质,包括矢量性质的大小,如分子偶极矩。本文提出的一个旋转等变的MolNet_Equi模型,能够理解和识别三维欧几里得空间中的分子旋转,并表现出在旋转敏感模式下预测方向偶极矩的能力,同时在标量性质预测方面也展现出卓越性能。分子旋转、偶极矩预测和偶极矩逆旋转这三个连续操作不会改变分子总偶极矩的原始预测结果,从而确保了MolNet_Equi的旋转等变性。此外,尽管MolNet_Equi模型仅使用偶极矩大小信息而非方向信息进行训练,但它仍能准确预测给定分子姿态下偶极矩的绝对方向。这项工作突出了将基本但关键的化学规则和概念纳入深度学习模型的潜力,从而推动具有化学直观性的模型的发展。