Department of Informatics, Federal University of Paraná, Curitiba, PR, Brazil.
Department of Oceanography and Limnology, Federal University of Rio Grande do Norte, Natal, RN, Brazil.
PeerJ. 2023 Nov 6;11:e16219. doi: 10.7717/peerj.16219. eCollection 2023.
Corals are colonial animals within the Phylum Cnidaria that form coral reefs, playing a significant role in marine environments by providing habitat for fish, mollusks, crustaceans, sponges, algae, and other organisms. Global climate changes are causing more intense and frequent thermal stress events, leading to corals losing their color due to the disruption of a symbiotic relationship with photosynthetic endosymbionts. Given the importance of corals to the marine environment, monitoring coral reefs is critical to understanding their response to anthropogenic impacts. Most coral monitoring activities involve underwater photographs, which can be costly to generate on large spatial scales and require processing and analysis that may be time-consuming. The Marine Ecology Laboratory (LECOM) at the Federal University of Rio Grande do Norte (UFRN) developed the project "#DeOlhoNosCorais" which encourages users to post photos of coral reefs on their social media (Instagram) using this hashtag, enabling people without previous scientific training to contribute to coral monitoring. The laboratory team identifies the species and gathers information on coral health along the Brazilian coast by analyzing each picture posted on social media. To optimize this process, we conducted baseline experiments for image classification and semantic segmentation. We analyzed the classification results of three different machine learning models using the Local Interpretable Model-agnostic Explanations (LIME) algorithm. The best results were achieved by combining EfficientNet for feature extraction and Logistic Regression for classification. Regarding semantic segmentation, the U-Net Pix2Pix model produced a pixel-level accuracy of 86%. Our results indicate that this tool can enhance image selection for coral monitoring purposes and open several perspectives for improving classification performance. Furthermore, our findings can be expanded by incorporating other datasets to create a tool that streamlines the time and cost associated with analyzing coral reef images across various regions.
珊瑚是刺胞动物门中的一种群居动物,它们形成珊瑚礁,通过为鱼类、软体动物、甲壳类动物、海绵、藻类和其他生物提供栖息地,在海洋环境中发挥着重要作用。全球气候变化导致更强烈和频繁的热应激事件发生,珊瑚由于与光合作用内共生体的共生关系被打破而失去颜色。鉴于珊瑚对海洋环境的重要性,监测珊瑚礁对于了解它们对人为影响的反应至关重要。大多数珊瑚监测活动都涉及水下照片,在大的空间尺度上生成这些照片成本很高,并且需要处理和分析,这可能很耗时。位于北里奥格兰德州联邦大学(UFRN)的海洋生态实验室(LECOM)开发了“#DeOlhoNosCorais”项目,鼓励用户在他们的社交媒体(Instagram)上使用这个标签发布珊瑚礁的照片,使没有先前科学训练的人能够为珊瑚监测做出贡献。实验室团队通过分析社交媒体上发布的每张图片来识别物种并收集有关巴西海岸珊瑚健康的信息。为了优化这个过程,我们进行了图像分类和语义分割的基准实验。我们使用局部可解释模型不可知解释(LIME)算法分析了三种不同机器学习模型的分类结果。通过将 EfficientNet 用于特征提取和逻辑回归用于分类,我们获得了最佳的结果。关于语义分割,U-Net Pix2Pix 模型产生了 86%的像素级准确率。我们的研究结果表明,该工具可以增强珊瑚监测目的的图像选择,并为提高分类性能开辟了几个视角。此外,通过纳入其他数据集,我们的发现可以得到扩展,以创建一个工具,简化分析不同地区珊瑚礁图像所需的时间和成本。